LIN Yanli, TAO Zehua, XIAO Zhao, HU Chenxu, YANG Bobo, WANG Ya, LU Rongzhu. Network toxicology and its application in studying exogenous chemical toxicity[J]. Journal of Environmental and Occupational Medicine, 2025, 42(2): 238-244. DOI: 10.11836/JEOM24348
Citation: LIN Yanli, TAO Zehua, XIAO Zhao, HU Chenxu, YANG Bobo, WANG Ya, LU Rongzhu. Network toxicology and its application in studying exogenous chemical toxicity[J]. Journal of Environmental and Occupational Medicine, 2025, 42(2): 238-244. DOI: 10.11836/JEOM24348

Network toxicology and its application in studying exogenous chemical toxicity

Funds: This study was funded.
More Information
  • Corresponding author:

    LU Rongzhu, E-mail: lurz@ujs.edu.cn

  • Received Date: July 18, 2024
  • Accepted Date: November 26, 2024
  • With the continuous development of society, a large number of new chemicals are continuously emerging, which presents a challenge to current risk assessment and safety management of chemicals. Traditional toxicology research methods have certain limitations in quickly, efficiently, and accurately assessing the toxicity of many chemicals, and cannot meet the actual needs. In response to this challenge, computational toxicology that use mathematical and computer models to achieve the prediction of chemical toxicity has emerged. In the meantime, as researchers increasingly pay attention to understanding the interaction mechanisms between exogenous chemical substances and the body from the system level, and multiomics technologies develop rapidly such as genomics, transcriptomics, proteomics, and metabolomics, huge amounts of data have been generated, providing rich information resources for studying the interactions between chemical substances and biological molecules. System toxicology and network toxicology have also developed accordingly. Of these, network toxicology can integrate these multiomics data to construct biomolecular networks, and then quickly predict the key toxicological targets and pathways of chemicals at the molecular level. This paper outlined the concept and development of network toxicology, summarized the main methods and supporting tools of network toxicology research, expounded the application status of network toxicology in studying potential toxicity of exogenous chemicals such as agricultural chemicals, environmental pollutants, industrial chemicals, and foodborne chemicals, and analyzed the development prospects and limitations of network toxicology research. This paper aimed to provide a reference for the application of network toxicology in other fields.

  • [1]
    KLING J. Toxicology testing steps towards computers[J]. Lab Anim, 2019, 48(2): 40-42. doi: 10.1038/s41684-018-0227-0
    [2]
    KAVLOCK R, DIX D. Computational toxicology as implemented by the U. S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk[J]. J Toxicol Environ Health, Part B, 2010, 13(2/3/4): 197-217.
    [3]
    靳远, 刘玉真, 戚光帅, 等. 系统毒理学研究进展[J]. 环境与职业医学, 2021, 38(5): 447-453.

    JIN Y, LIU Y Z, QI G S, et al. Advances in systems toxicology research[J]. J Environ Occup Med, 2021, 38(5): 447-453.
    [4]
    刘睿, 李新宇, 李亚卓, 等. 网络毒理学及其在中药毒性成分预测中的应用研究[J]. 药物评价研究, 2018, 41(5): 709-715.

    LIU R, LI X Y, LI Y Z, et al. Network toxicology and its application in predicting the toxicity of traditional Chinese medicine[J]. Drug Evaluation Res, 2018, 41(5): 709-715.
    [5]
    范骁辉, 赵筱萍, 金烨成, 等. 论建立网络毒理学及中药网络毒理学研究思路[J]. 中国中药杂志, 2011, 36(21): 2920-2922.

    FAN X H, ZHAO X P, JIN Y C, et al. Network toxicology and its application to traditional Chinese medicine[J]. China J Chin Mater Med, 2011, 36(21): 2920-2922.
    [6]
    YUAN Z, PAN Y, LENG T, et al. Progress and prospects of research ideas and methods in the network pharmacology of traditional Chinese medicine[J]. J Pharm Pharm Sci, 2022, 25: 218-226. doi: 10.18433/jpps32911
    [7]
    刘昌孝, 陈士林, 肖小河, 等. 中药质量标志物(Q-Marker): 中药产品质量控制的新概念[J]. 中草药, 2016, 47(09): 1443-1457.

    LIU C X, CHEN S L, XIAO X H, et al. A new concept on quality marker of Chinese materia medica: quality control for Chinese medicinal products[J]. Chin Tradit Herb Drugs, 2016, 47(09): 1443-1457.
    [8]
    孔娇, 田悦, 刘传鑫, 等. “量-权-证”网络毒理学的提出与应用: 以八角莲醇提液致肝毒性为例[J]. 中国中药杂志, 2022, 47(2): 511-527.

    KONG J, TIAN Y, LIU C X, et al. Mechanism of hepatotoxicity induced by ethanol extract of Dysosma versipellis based on "quantity-weight-evidence" network toxicology[J]. China J Chin Mater Med, 2022, 47(2): 511-527.
    [9]
    张林, 王停, 徐子瑛, 等. 基于网络毒理学预测和细胞生物学验证的淫羊藿潜在肝毒性成分与机制研究[J]. 中国中药杂志, 2021, 46(10): 2413-2423.

    ZHANG L, WANG T, XU Z Y, et al. Potential hepatotoxic compounds and mechanisms of Epimedii Folium based on network toxicology and cell experimental validation[J]. China J Chin Mater Med, 2021, 46(10): 2413-2423.
    [10]
    GAULTON A, HERSEY A, NOWOTKA M, et al. The ChEMBL database in 2017[J]. Nucleic Acids Res, 2017, 45(D1): D945-D954. doi: 10.1093/nar/gkw1074
    [11]
    KIM S, CHEN J, CHENG T, et al. PubChem 2023 update[J]. Nucleic Acids Res, 2023, 51(D1): D1373-D1380. doi: 10.1093/nar/gkac956
    [12]
    STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33.
    [13]
    DAVIS A P, WIEGERS T C, JOHNSON R J, et al. Comparative Toxicogenomics Database (CTD): update 2023[J]. Nucleic Acids Res, 2023, 51(D1): D1257-D1262. doi: 10.1093/nar/gkac833
    [14]
    ZHOU Y, ZHANG Y, LIAN X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents[J]. Nucleic Acids Res, 2022, 50(D1): D1398-D1407. doi: 10.1093/nar/gkab953
    [15]
    AMBERGER J S, BOCCHINI C A, SCOTT A F, et al. OMIM. org: leveraging knowledge across phenotype-gene relationships[J]. Nucleic Acids Res, 2019, 47(D1): D1038-D1043. doi: 10.1093/nar/gky1151
    [16]
    SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. doi: 10.1093/nar/gkaa1074
    [17]
    DENNIS G, SHERMAN B T, HOSACK D A, et al. DAVID: database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4(5): P3. doi: 10.1186/gb-2003-4-5-p3
    [18]
    NIKIFOROVA V J, WILLMITZER L. Network visualization and network analysis[M]//BAGINSKY S, FERNIE A R. Plant Systems Biology. Boston: Birkhäuser Basel, 2007: 245-275.
    [19]
    DA COSTA RIBEIRO QUINTANS J A, SOUZA T, DA COSTA RIBEIRO QUINTANS I L A, et al. Network toxicology and molecular docking to investigate the Non-AChE mechanisms of organophosphate-induced neurodevelopmental toxicity[J]. Toxics, 2023, 11(8): 710. doi: 10.3390/toxics11080710
    [20]
    LI J, BI H. Clarification of the molecular mechanisms underlying glyphosate-induced major depressive disorder: a network toxicology approach[J]. Ann Gen Psychiatry, 2024, 23(1): 8. doi: 10.1186/s12991-024-00491-4
    [21]
    HE J, ZHU X, XU K, et al. Network toxicological and molecular docking to investigate the mechanisms of toxicity of agricultural chemical Thiabendazole[J]. Chemosphere, 2024, 363: 142711. doi: 10.1016/j.chemosphere.2024.142711
    [22]
    CAO X, MAO K, ZHANG Y, et al. Integration of proteomics and network toxicology reveals the mechanism of mercury chloride induced hepatotoxicity, in mice and HepG2 cells[J]. Food Chem Toxicol, 2023, 177: 113820. doi: 10.1016/j.fct.2023.113820
    [23]
    HUANG S J. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: acetyl tributyl citrate as an example[J]. Sci Total Environ, 2023, 905: 167904. doi: 10.1016/j.scitotenv.2023.167904
    [24]
    LIU D, CHEN J, XIE Y, et al. Investigating the molecular mechanisms of glyoxal-induced cytotoxicity in human embryonic kidney cells: Insights from network toxicology and cell biology experiments[J]. Environ Toxicol, 2022, 37(9): 2269-2280. doi: 10.1002/tox.23593
    [25]
    LI C, XING H, HE Q, et al. Network toxicology guided mechanism study on the association between thyroid function and exposures to polychlorinated biphenyls mixture[J]. BioMed Res Int, 2022, 2022: 2394398.
    [26]
    ZHONG Y, REN J, LI R, et al. Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: an in silico study[J]. Chemosphere, 2023, 314: 137701. doi: 10.1016/j.chemosphere.2022.137701
    [27]
    XIE L, HUANG B, ZHAO X, et al. Exploring the mechanisms underlying effects of bisphenol a on cardiovascular disease by network toxicology and molecular docking[J]. Heliyon, 2024, 10(10): e31473. doi: 10.1016/j.heliyon.2024.e31473
    [28]
    HUANG S. Analysis of environmental pollutant Bisphenol F elicited prostate injury targets and underlying mechanisms through network toxicology, molecular docking, and multi-level bioinformatics data integration[J]. Toxicology, 2024, 506: 153847. doi: 10.1016/j.tox.2024.153847
    [29]
    ZHANG G H, LIU H, LIU M H, et al. Network toxicology prediction and molecular docking-based strategy to explore the potential toxicity mechanism of metformin chlorination byproducts in drinking water[J]. Comb Chem High Throughput Screen, 2024, 27(1): 101-117. doi: 10.2174/1386207326666230426105412
    [30]
    RUAN H, LU Q, WU J, et al. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction[J]. Crit Rev Food Sci Nutr, 2022, 62(9): 2281-2308. doi: 10.1080/10408398.2021.1960794
    [31]
    CHU Z Y, ZI X J. Network toxicology and molecular docking for the toxicity analysis of food contaminants: a case of Aflatoxin B1[J]. Food Chem Toxicol, 2024, 188: 114687. doi: 10.1016/j.fct.2024.114687
    [32]
    申佰轩, 郭康雅, 郭源辉, 等. 网络毒理学在中药安全性评价中的研究现状与发展思考[J]. 药物评价研究, 2024, 47(1): 179-190.

    SHEN B X, GUO K Y, GUO Y H, et al. Research status and development thinking of network toxicology in safety evaluation of traditional Chinese medicine[J]. Drug Eval Res, 2024, 47(1): 179-190.
  • Related Articles

    [1]LENG Jing, WANG Ning, HONG Xinyu. Review on toxic effects and mechanisms of rare earth neodymium[J]. Journal of Environmental and Occupational Medicine, 2025, 42(6): 770-773. DOI: 10.11836/JEOM24506
    [2]BU Wenxia, ZHAO Xinyuan, WANG Xiaoke, TANG Juan. Biological effects and toxicity mechanisms of polystyrene nanoplastics: A review[J]. Journal of Environmental and Occupational Medicine, 2023, 40(6): 728-736. DOI: 10.11836/JEOM22447
    [3]JIN Xiaoting, ZHENG Yuxin. Pay attention to health hazards of diesel exhaust exposure, and strengthen occupational protection[J]. Journal of Environmental and Occupational Medicine, 2023, 40(5): 487-490. DOI: 10.11836/JEOM22450
    [4]LI Wen-hua, XUE Yu-ying. Research progress on neurotoxic effects of silver nanoparticles[J]. Journal of Environmental and Occupational Medicine, 2019, 36(7): 697-702. DOI: 10.13213/j.cnki.jeom.2019.18849
    [5]CHEN Die, GAO Ming, WU Nan-xiang. Progress on toxicity and mechanisms of persistent organic pollutants[J]. Journal of Environmental and Occupational Medicine, 2018, 35(6): 558-565. DOI: 10.13213/j.cnki.jeom.2018.17661
    [6]YANG Shu, YANG Fei, FENG Xiang-ling, CHEN Ji-hua, WEN Cong, CHEN Lü. Review on role of non-coding RNA in microcystin-LR toxicity[J]. Journal of Environmental and Occupational Medicine, 2018, 35(1): 83-88. DOI: 10.13213/j.cnki.jeom.2018.17592
    [7]ANG Sheng-jun, XIONG Li-lin, TANG Meng. Effects of PM2.5 on iNOS Synthesis in Human Lung Adenocarcinoma A549 Cells and Related Mechanism[J]. Journal of Environmental and Occupational Medicine, 2016, 33(5): 433-437. DOI: 10.13213/j.cnki.jeom.2016.16131
    [8]YAO Xiao-feng , MA Yu-fang . Roles of Autophagy in Toxicity Mechanism of Environmental Pollutants[J]. Journal of Environmental and Occupational Medicine, 2015, 32(9): 892-896. DOI: 10.13213/j.cnki.jeom.2015.15293
    [9]YAN Meng-ling , ZHOU Zhi-jun , CHANG Xiu-li . Research Progress on Neurodevelopmental Toxicity of Paraquat[J]. Journal of Environmental and Occupational Medicine, 2015, 32(3): 275-278. DOI: 10.13213/j.cnki.jeom.2015.14401
    [10]TAO He , LAN Zhi-xian , WU Nan-xiang . Advances on Toxicity and Toxic Mechanisms of Nanomaterials to Aquatic Organisms[J]. Journal of Environmental and Occupational Medicine, 2014, 31(8): 634-638. DOI: 10.13213/j.cnki.jeom.2014.0150
  • Other Related Supplements

Catalog

    Article views (2196) PDF downloads (232) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return