LIU Xuan, CHEN Huiting, ZENG Qiang. Research progress on welding fume exposure and early damage to cardiovascular system[J]. Journal of Environmental and Occupational Medicine, 2025, 42(1): 115-119, 125. DOI: 10.11836/JEOM24232
Citation: LIU Xuan, CHEN Huiting, ZENG Qiang. Research progress on welding fume exposure and early damage to cardiovascular system[J]. Journal of Environmental and Occupational Medicine, 2025, 42(1): 115-119, 125. DOI: 10.11836/JEOM24232

Research progress on welding fume exposure and early damage to cardiovascular system

Funds: This study was funded.
More Information
  • Corresponding author:

    ZENG Qiang, E-mail: tjcdczys@163.com

  • Received Date: May 19, 2024
  • Accepted Date: November 13, 2024
  • In recent years, the occupational health literacy level of key populations in China has continued to improve, and the prevention and treatment of occupational diseases has achieved remarkable results, but industrial dust is still a main occupational hazard endangering the health of workers. The welding fumes generated by welding operations are one of the industrial dusts, which seriously damage the cardiovascular system of welding workers, and bring many difficulties to the prevention and control of occupational diseases due to their complex composition and different particle sizes. In this paper, the mechanism of cardiovascular system injury caused by welding fumes and related early markers were reviewed, in order to discover early cardiovascular system injury of welders and provide theoretical support for the in-depth exploration of early biomarkers of cardiovascular system injury caused by welding fumes.

  • [1]
    杨红斌. 论焊接生产现状及焊接技术发展[J]. 世界有色金属, 2021(17): 219-220. doi: 10.3969/j.issn.1002-5065.2021.17.102

    YANG H B. On the current situation of welding production and the development of welding technology[J]. World Nonferr Met, 2021(17): 219-220. doi: 10.3969/j.issn.1002-5065.2021.17.102
    [2]
    ILO Regional Skills and Employability Programme in Asia and the Pacific. Regional model competency standards: welding services[EB/OL]. (2015-08-01). https://www.ilo.org/publications/regional-model-competency-standards-welding-services.
    [3]
    GUHA N, LOOMIS D, GUYTON KZ, et al. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide[J]. Lancet Oncol, 2017, 18(5): 581-582. doi: 10.1016/S1470-2045(17)30255-3
    [4]
    National Bureau of Statistics. National data[EB/OL]. [2024-10-04]. https://data.stats.gov.cn/index.htm.
    [5]
    RUSHTON L, HUTCHINGS SJ, FORTUNATO L, et al. Occupational cancer burden in Great Britain[J]. Br J Cancer, 2012, 107 Suppl 1(Suppl 1): S3-S7.
    [6]
    刘鑫, 肖吕武, 周浩, 等. 噪声及噪声联合电焊烟尘对广州市某整车制造企业劳动者心血管系统的影响[J]. 职业与健康, 2020, 36(6): 741-744.

    LIU X, XIAO L W, ZHOU H, et al. Influence of noise and noise combined with welding fume on cardiovascular system of laborers in a whole vehicle manufacturing enterprise in Guangzhou[J]. Occup Health, 2020, 36(6): 741-744.
    [7]
    IBFELT E, BONDE JP, HANSEN J. Exposure to metal welding fume particles and risk for cardiovascular disease in Denmark: a prospective cohort study[J]. Occup Environ Med, 2010, 67(11): 772-777. doi: 10.1136/oem.2009.051086
    [8]
    TAJ T, GLIGA AR, HEDMER M, et al. Effect of welding fumes on the cardiovascular system: a six-year longitudinal study[J]. Scand J Work Environ Health, 2021, 47(1): 52-61. doi: 10.5271/sjweh.3908
    [9]
    ZHANG J, CAVALLARI JM, FANG SC, et al. Application of linear mixed-effects model with LASSO to identify metal components associated with cardiac autonomic responses among welders: a repeated measures study[J]. Occup Environ Med, 2017, 74(11): 810-815. doi: 10.1136/oemed-2016-104067
    [10]
    QIAN H, LI G, LUO Y, et al. Relationship between occupational metal exposure and hypertension risk based on conditional logistic regression analysis[J]. Metabolites, 2022, 12(12): 1259. doi: 10.3390/metabo12121259
    [11]
    STANISLAWSKA M, HALATEK T, CIESLAK M, et al. Coarse, fine and ultrafine particles arising during welding-Analysis of occupational exposure[J]. Microchem J, 2017, 135: 1-9. doi: 10.1016/j.microc.2017.06.021
    [12]
    DIERSCHKE K, ISAXON C, ANDERSSON U B K, et al. Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates[J]. Int Arch Occup Environ Health, 2017, 90(5): 451-463. doi: 10.1007/s00420-017-1209-z
    [13]
    DUECK ME, RAFIEE A, MINO J, et al. Welding fume exposure and health risk assessment in a cohort of apprentice welders[J]. Ann Work Expo Health, 2021, 65(7): 775-788. doi: 10.1093/annweh/wxab016
    [14]
    MCCARRICK S, KARLSSON H L, CARLANDER U. Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro[J]. Arch Toxicol, 2022, 96(4): 969-985. doi: 10.1007/s00204-022-03247-9
    [15]
    RICCELLI MG, GOLDONI M, POLI D, et al. Welding fumes, a risk factor for lung diseases[J]. Int J Environ Res Public Health, 2020, 17(7): 2552. doi: 10.3390/ijerph17072552
    [16]
    LI G, JIANG J, LIAO Y, et al. Risk for lung-related diseases associated with welding fumes in an occupational population: evidence from a cox model[J]. Front Public Health, 2022, 10: 990547. doi: 10.3389/fpubh.2022.990547
    [17]
    BOYCE GR, SHOEB M, KODALI V, et al. Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver[J]. Toxicol Rep, 2020, 7: 1350-1355. doi: 10.1016/j.toxrep.2020.10.008
    [18]
    LAI CH, HO SC, PAN CH, et al. Chronic exposure to metal fume PM2.5 on inflammation and stress hormone cortisol in shipyard workers: a repeat measurement study[J]. Ecotoxicol Environ Saf, 2021, 215: 112144. doi: 10.1016/j.ecoenv.2021.112144
    [19]
    World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2024-10-08]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
    [20]
    ANTONINI JM, ROBERTS JR, SCHWEGLER-BERRY D, et al. Comparative microscopic study of human and rat lungs after overexposure to welding fume[J]. Ann Occup Hyg, 2013, 57(9): 1167-1179.
    [21]
    KRABBE J, KRAUS T, KRABBE H, et al. Welding fume instillation in isolated perfused mouse lungs—effects of zinc-and copper-containing welding fumes[J]. Int J Mol Sci, 2022, 23(16): 9052. doi: 10.3390/ijms23169052
    [22]
    MCCARRICK S, WEI Z, MOELIJKER N, et al. High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility[J]. Nanotoxicology, 2019, 13(10): 1293-1309. doi: 10.1080/17435390.2019.1650972
    [23]
    BLEIDORN J, ALAMZAD-KRABBE H, GERHARDS B, et al. The pro-inflammatory stimulus of zinc- and copper-containing welding fumes in whole blood assay via protein tyrosine phosphatase 1B inhibition[J]. Sci Rep, 2019, 9(1): 1315. doi: 10.1038/s41598-018-37803-0
    [24]
    KODALI V, SHOEB M, MEIGHAN TG, et al. Bioactivity of circulatory factors after pulmonary exposure to mild or stainless steel welding fumes[J]. Toxicol Sci, 2020, 177(1): 108-120. doi: 10.1093/toxsci/kfaa084
    [25]
    MEYERSTEIN D. Re-examining Fenton and Fenton-like reactions[J]. Nat Rev Chem, 2021, 5(9): 595-597. doi: 10.1038/s41570-021-00310-4
    [26]
    LEONARD SS, CHEN BT, STONE SG, et al. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species[J]. Part Fibre Toxicol, 2010, 7: 32. doi: 10.1186/1743-8977-7-32
    [27]
    KRISHNARAJ J, KOWSHIK J, SEBASTIAN R, et al. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats[J]. Toxicol Lett, 2017, 274: 8-19. doi: 10.1016/j.toxlet.2017.04.001
    [28]
    LUCAS D, GUERRERO F, JOUVE E, et al. Effect of occupational exposure to welding fumes and noise on heart rate variability: an exposed-unexposed study on welders and airport workers' population[J]. Front Public Health, 2022, 10: 937774. doi: 10.3389/fpubh.2022.937774
    [29]
    FANG SC, CAVALLARI JM, EISEN EA, et al. Vascular function, inflammation, and variations in cardiac autonomic responses to particulate matter among welders[J]. AM J Epidemiol, 2009, 169(7): 848-856. doi: 10.1093/aje/kwn405
    [30]
    LI H, HEDMER M, KAREDAL M, et al. A cross-sectional study of the cardiovascular effects of welding fumes[J]. PLoS One, 2015, 10(7): e0131648. doi: 10.1371/journal.pone.0131648
    [31]
    XU Y, LI H, HEDMER M, et al. Occupational exposure to particles and mitochondrial DNA-relevance for blood pressure[J]. Environ Health, 2017, 16(1): 22. doi: 10.1186/s12940-017-0234-4
    [32]
    YOUNG HA, BENTON D. Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health?[J]. Behav Pharmacol, 2018, 29(2 and 3-Spec Issue): 140-151.
    [33]
    CAVALLARI JM, EISEN EA, FANG SC, et al. PM2.5 metal exposures and nocturnal heart rate variability: a panel study of boilermaker construction workers[J]. Environ Health, 2008, 7: 36. doi: 10.1186/1476-069X-7-36
    [34]
    BAUER A, KANTELHARDT JW, BARTHEL P, et al. Deceleration capacity of heart rate AS A predictor of mortality after myocardial infarction: cohort study[J]. Lancet, 2006, 367(9523): 1674-1681. doi: 10.1016/S0140-6736(06)68735-7
    [35]
    KIM JY, CHEN JC, BOYCE PD, et al. Exposure to welding fumes is associated with acute systemic inflammatory responses[J]. Occup Environ Med, 2005, 62(3): 157-163. doi: 10.1136/oem.2004.014795
    [36]
    MARKERT A, BAUMANN R, GERHARDS B, et al. Single and combined exposure to zinc- and copper-containing welding fumes lead to asymptomatic systemic inflammation[J]. J Occup Environ Med, 2016, 58(2): 127-132. doi: 10.1097/JOM.0000000000000652
    [37]
    BAUMANN R, BRAND P, CHAKER A, et al. Human nasal mucosal c-reactive protein responses after inhalation of ultrafine welding fume particles: positive correlation to SYSTEMIC C-reactive protein responses[J]. Nanotoxicology, 2018, 12(10): 1130-1147. doi: 10.1080/17435390.2018.1498930
    [38]
    THOMPSON JC, JAYNE C, THOMPSON J, et al. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis[J]. J Lipid Res, 2015, 56(2): 286-293. doi: 10.1194/jlr.M054015
    [39]
    BAUMANN R, GUBE M, MARKERT A, et al. Systemic serum amyloid a as a biomarker for exposure to zinc and/or copper-containing metal fumes[J]. J Expo Sci Environ Epidemiol, 2018, 28(1): 84-91. doi: 10.1038/jes.2016.86
    [40]
    BAUMANN R, JORASLAFSKY S, MARKERT A, et al. IL-6, a central acute-phase mediator, as an early biomarker for exposure to zinc-based metal fumes[J]. Toxicology, 2016, 373: 63-73. doi: 10.1016/j.tox.2016.11.001
    [41]
    NWOGUEZE BC, OFILI MI, UZUEGBUE UE, et al. Modulatory role of welding fumes on serum zinc and copper levels and oxidative stress markers among welders: considering smoking as a possible implication[J]. Toxicol Rep, 2024, 12: 48-55. doi: 10.1016/j.toxrep.2023.12.007
    [42]
    LAI CY, LAI CH, CHUANG HC, et al. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers[J]. Sci Rep, 2016, 6: 33515. doi: 10.1038/srep33515
    [43]
    LI H, HEDMER M, WOJDACZ T, et al. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes[J]. Environ Mol Mutagen, 2015, 56(8): 684-693. doi: 10.1002/em.21958
    [44]
    DI MINNO A, TURNU L, PORRO B, et al. 8-hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature[J]. Antioxid Redox Signal, 2016, 24(10): 548-555. doi: 10.1089/ars.2015.6508
    [45]
    GRACZYK H, LEWINSKI N, ZHAO J, et al. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study[J]. Part Fibre Toxicol, 2016, 13(1): 31.
    [46]
    KO JL, CHENG YJ, LIU GC, et al. The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers[J]. Ind Health, 2017, 55(4): 345-353. doi: 10.2486/indhealth.2016-0148
    [47]
    ABD EL-MAKSOUD HA, SALEM LM, EL-HARRIF MG. Biochemical alterations on occupational stress between smoking and non-smoking iron & steel workers in Egypt[J]. J Toxicol Health, 2013, 103: 202-210.
    [48]
    LESO V, VETRANI I, DELLA VOLPE I, et al. Welding fume exposure and epigenetic alterations: a systematic review[J]. Int J Environ Res Public Health, 2019, 16(10): 1745. doi: 10.3390/ijerph16101745
    [49]
    ZHANG J, LIU Z, UMUKORO PE, et al. An epigenome-wide association analysis of cardiac autonomic responses among a population of welders[J]. Epigenetics, 2017, 12(2): 71-76. doi: 10.1080/15592294.2016.1270486
    [50]
    SCHEURER T, STEFFENS J, MARKERT A, et al. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro[J]. J Occup Med Toxicol, 2022, 17(1): 15. doi: 10.1186/s12995-022-00356-0
    [51]
    HARTMANN L, BAUER M, BERTRAM J, et al. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans[J]. Int J Hyg Environ Health, 2014, 217(2/3): 160-168.
  • Related Articles

    [1]XIANG Xiaoxia, ZHANG Xuejian, LIU Yang, HE Liu, LUO Jun. Monitoring and occupational health risk assessment of key volatile organic compounds in workplace air based on qualitative monitoring[J]. Journal of Environmental and Occupational Medicine, 2024, 41(11): 1246-1250. DOI: 10.11836/JEOM24229
    [2]QIN Ru-nan, ZHANG Ming, HOU Yu-geng, TANG Hui-jing. Analysis on occupational health status of noise exposure workers in a steel pipe manufacturing enterprise in Tianjin[J]. Journal of Environmental and Occupational Medicine, 2020, 37(9): 877-881. DOI: 10.13213/j.cnki.jeom.2020.20192
    [3]LIANG Jing , YU Gui-xin , LUO Hu , CHANG Xiao-yan . Reference Range of Serum Alanine Aminotransferase in Occupational Populations[J]. Journal of Environmental and Occupational Medicine, 2015, 32(1): 47-50. DOI: 10.13213/j.cnki.jeom.2015.14164
    [4]RONGYan , ZHANG Qiao-yun , RUAN Yan-jun , SUN Dao-yuan . Evaluation Method for Application of Occupational Health Surveillance Technical Specification[J]. Journal of Environmental and Occupational Medicine, 2014, 31(2): 138-142. DOI: 10.13213/j.cnki.jeom.2014.0036
    [5]GAI Bing-bing , CHENG Qi-jian , CHEN Da-min , YU Hui-ting , ZHAO Dong-qing . Application of Small Airway Function Test in Occupational Health Surveillance and Risk Assessment of Workers Exposed to Dust[J]. Journal of Environmental and Occupational Medicine, 2012, 29(6): 355-360.
    [6]ZHOU Wan-li , WU Pei-hua , SUN Dong-hong . Analysis on the Occurrence of Chronic Occupational Diseases in Former Pudong New Area of Shanghai, 2004-2010[J]. Journal of Environmental and Occupational Medicine, 2012, 29(2): 111-114.
    [7]HONG Qi , ZHOU Zhi-jun , DING Jin-yu , WANG Xiao-yu , GUO Wei-wei . Characteristics of the Bibliometric Indexes of Chinese Core Journals on Environmental and Occupational Medicine[J]. Journal of Environmental and Occupational Medicine, 2010, 27(9): 580-582.
    [8]GAI Bing-bing , YU Hui-ting . Research on the Effects of the Health Promotion of Workers Exposed to Lead in Microelectronics Industry[J]. Journal of Environmental and Occupational Medicine, 2010, 27(6): 328-332.
    [9]GAI Bing-bing , CHEN Chun-hui , ZHU Su-rong . The Discussions on Types and Norms of Occupational Health Legal Instruments[J]. Journal of Environmental and Occupational Medicine, 2010, 27(5): 288-290.
    [10]XIANG Ju-xiang , YANG Qi-fa , YU Jian-zhong , HU Han-qiong , LI Fei . Preliminary Exploration of Quality Control in Occupational Health Surveillance by On-site Service[J]. Journal of Environmental and Occupational Medicine, 2010, 27(2): 112-113.
  • Other Related Supplements

Catalog

    Article views (114) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return