LUO Hangjun, BIAN Qian. Roles and mechanisms of circular RNAs in lung diseases caused by environmental exposure[J]. Journal of Environmental and Occupational Medicine, 2022, 39(12): 1430-1437. DOI: 10.11836/JEOM22014
Citation: LUO Hangjun, BIAN Qian. Roles and mechanisms of circular RNAs in lung diseases caused by environmental exposure[J]. Journal of Environmental and Occupational Medicine, 2022, 39(12): 1430-1437. DOI: 10.11836/JEOM22014

Roles and mechanisms of circular RNAs in lung diseases caused by environmental exposure

Funds: This study was funded.
More Information
  • Corresponding author:

    BIAN Qian, E-mail: bianqian@jscdc.cn

  • Received Date: January 10, 2022
  • Accepted Date: August 29, 2022
  • Available Online: February 14, 2023
  • Environmental exposure is an important factor in the occurrence and development of various lung diseases. Circular RNAs (circRNAs) are a class of noncoding RNA molecules, which are widely expressed in eukaryotes, and have been proved to play an important role in the occurrence and progression of a variety of human diseases. Studies have shown that circRNAs are closely related to various lung diseases, and have been used as diagnostic and prognostic biomarkers and therapeutic targets of some lung diseases. This review briefly described the physiological functions and molecular mechanisms of circRNAs, and summarized the regulatory mechanisms of circRNAs in lung diseases caused by environmental exposure, in order to provide new ideas for the research and application in related fields in the future.

  • [1]
    TAO M, ZHENG M, XU Y, et al. CircRNAs and their regulatory roles in cancers[J]. Mol Med, 2021, 27(1): 94. doi: 10.1186/s10020-021-00359-3
    [2]
    DRAGOMIR M, CALIN G A. Circular RNAs in cancer - lessons learned from microRNAs[J]. Front Oncol, 2018, 8: 179. doi: 10.3389/fonc.2018.00179
    [3]
    WANG J, ZHU M, PAN J, et al. Circular RNAs: a rising star in respiratory diseases[J]. Respir Res, 2019, 20(1): 3. doi: 10.1186/s12931-018-0962-1
    [4]
    HUA Q, CHEN Y, LIU Y, et al. Circular RNA 0039411 is involved in neodymium oxide-induced inflammation and antiproliferation in a human bronchial epithelial cell line via sponging miR-93-5p[J]. Toxicol Sci, 2019, 170(1): 69-81. doi: 10.1093/toxsci/kfz074
    [5]
    ZHANG H D, JIANG L H, SUN D W, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1-7. doi: 10.1007/s12282-017-0793-9
    [6]
    CHEN L, NAN A, ZHANG N, et al. Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer[J]. Mol Cancer, 2019, 18(1): 13. doi: 10.1186/s12943-019-0943-0
    [7]
    CHENG Z, YU C, CUI S, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1[J]. Nat Commun, 2019, 10(1): 3200. doi: 10.1038/s41467-019-11162-4
    [8]
    LI X, LIU C X, XUE W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection[J]. Mol Cell, 2017, 67(2): 214-227.e7. doi: 10.1016/j.molcel.2017.05.023
    [9]
    LIU C X, LI X, NAN F, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J]. Cell, 2019, 177(4): 865-880.e21. doi: 10.1016/j.cell.2019.03.046
    [10]
    LI B, ZHU L, LU C, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity[J]. Nat Commun, 2021, 12(1): 295. doi: 10.1038/s41467-020-20527-z
    [11]
    CHEN S W, ZHU S Q, PEI X, et al. Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC[J]. Mol Cancer, 2021, 20(1): 144. doi: 10.1186/s12943-021-01448-x
    [12]
    ZHENG C, ZHANG Y, ZHAO Y, et al. Circ-OSBPL2 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-193a-5p/BRD4 axis[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 919-931. doi: 10.2147/COPD.S298465
    [13]
    WANG Z, ZUO Y, GAO Z. CircANKRD11 knockdown protects HPMECs from cigarette smoke extract-induced injury by regulating miR-145-5p/BRD4 axis[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 887-899. doi: 10.2147/COPD.S300332
    [14]
    LIANG J, SHEN Y C, ZHANG X Y, et al. Circular RNA HIPK3 downregulation mediates hydrogen peroxide-induced cytotoxicity in human osteoblasts[J]. Aging (Albany NY), 2020, 12(2): 1159-1170.
    [15]
    QU S, YANG X, LI X, et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. doi: 10.1016/j.canlet.2015.06.003
    [16]
    LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256-264. doi: 10.1038/nsmb.2959
    [17]
    ZHANG Y, ZHANG X O, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. doi: 10.1016/j.molcel.2013.08.017
    [18]
    ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1): 55-66. doi: 10.1016/j.molcel.2014.08.019
    [19]
    ZHOU M, XIAO M S, LI Z, et al. New progresses of circular RNA biology: from nuclear export to degradation[J]. RNA Biol, 2021, 18(10): 1365-1373. doi: 10.1080/15476286.2020.1853977
    [20]
    LI M, HUA Q, SHAO Y, et al. Circular RNA circBbs9 promotes PM2.5-induced lung inflammation in mice via NLRP3 inflammasome activation[J]. Environ Int, 2020, 143: 105976. doi: 10.1016/j.envint.2020.105976
    [21]
    YAO W, LI Y, HAN L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci, 2018, 166(2): 465-478. doi: 10.1093/toxsci/kfy221
    [22]
    ZHAO J, XIA H, WU Y, et al. CircRNA_0026344 via miR-21 is involved in cigarette smoke-induced autophagy and apoptosis of alveolar epithelial cells in emphysema[J]. Cell Biol Toxicol, 2021,doi: 10.1007/s10565-021-09654-5.
    [23]
    HUANG A, ZHENG H, WU Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517. doi: 10.7150/thno.42174
    [24]
    ABDELMOHSEN K, PANDA A C, MUNK R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361-369. doi: 10.1080/15476286.2017.1279788
    [25]
    DU W W, YANG W, LIU E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44(6): 2846-2858. doi: 10.1093/nar/gkw027
    [26]
    JIA Y, LI X, NAN A, et al. Circular RNA 406961 interacts with ILF2 to regulate PM2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways[J]. Environ Int, 2020, 141: 105755. doi: 10.1016/j.envint.2020.105755
    [27]
    ZHOU Z, JIANG R, YANG X, et al. circRNA mediates silica-induced macrophage activation via HECTD1/ZC3H12A-dependent ubiquitination[J]. Theranostics, 2018, 8(2): 575-592. doi: 10.7150/thno.21648
    [28]
    LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can Be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37.e9. doi: 10.1016/j.molcel.2017.02.017
    [29]
    YANG Y, FAN X, MAO M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. doi: 10.1038/cr.2017.31
    [30]
    HURGOBIN B, DE JONG E, BOSCO A. Insights into respiratory disease through bioinformatics[J]. Respirology, 2018, 23(12): 1117-1126. doi: 10.1111/resp.13401
    [31]
    FALCON-RODRIGUEZ C I, OSORNIO-VARGAS A R, SADA-OVALLE I, et al. Aeroparticles, composition, and lung diseases[J]. Front Immunol, 2016, 7: 3.
    [32]
    AGHAPOUR M, RAEE P, MOGHADDAM S J, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure[J]. Am J Respir Cell Mol Biol, 2018, 58(2): 157-169. doi: 10.1165/rcmb.2017-0200TR
    [33]
    HOY R F, CHAMBERS D C. Silica-related diseases in the modern world[J]. Allergy, 2020, 75(11): 2805-2817. doi: 10.1111/all.14202
    [34]
    GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1659-1724. doi: 10.1016/S0140-6736(16)31679-8
    [35]
    ZHONG Y, WANG Y, ZHANG C, et al. Identification of long non-coding RNA and circular RNA in mice after intra-tracheal instillation with fine particulate matter[J]. Chemosphere, 2019, 235: 519-526. doi: 10.1016/j.chemosphere.2019.06.122
    [36]
    WANG J, ZHU M, SONG J, et al. The circular RNA circTXNRD1 promoted ambient particulate matter-induced inflammation in human bronchial epithelial cells by regulating miR-892a/COX-2 axis[J]. Chemosphere, 2022, 286(Pt 1): 131614.
    [37]
    LI X, JIA Y, NAN A, et al. CircRNA104250 and lncRNAuc001. dgp. 1 promote the PM2.5-induced inflammatory response by co-targeting miR-3607-5p in BEAS-2B cells[J]. Environ Pollut, 2020, 258: 113749. doi: 10.1016/j.envpol.2019.113749
    [38]
    JIN X, WANG L, YANG M. circ_0038467 promotes PM2.5-induced bronchial epithelial cell dysfunction[J]. Open Med (Wars), 2021, 16(1): 854-863. doi: 10.1515/med-2021-0213
    [39]
    NI L, CHUANG C C, ZUO L. Fine particulate matter in acute exacerbation of COPD[J]. Front Physiol, 2015, 6: 294.
    [40]
    IZZOTTI A, PULLIERO A. Molecular damage and lung tumors in cigarette smoke-exposed mice[J]. Ann NY Acad Sci, 2015, 1340(1): 75-83. doi: 10.1111/nyas.12697
    [41]
    MALHOTRA J, MALVEZZI M, NEGRI E, et al. Risk factors for lung cancer worldwide[J]. Eur Respir J, 2016, 48(3): 889-902. doi: 10.1183/13993003.00359-2016
    [42]
    DURHAM A L, ADCOCK I M. The relationship between COPD and lung cancer[J]. Lung Cancer, 2015, 90(2): 121-127. doi: 10.1016/j.lungcan.2015.08.017
    [43]
    ZENG N, WANG T, CHEN M, et al. Cigarette smoke extract alters genome-wide profiles of circular RNAs and mRNAs in primary human small airway epithelial cells[J]. J Cell Mol Med, 2019, 23(8): 5532-5541. doi: 10.1111/jcmm.14436
    [44]
    BAI J, DENG J, HAN Z, et al. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis[J]. Toxicol Lett, 2021, 347: 58-66. doi: 10.1016/j.toxlet.2021.04.017
    [45]
    ADAMCAKOVA J, MOKRA D. New insights into pathomechanisms and treatment possibilities for lung silicosis[J]. Int J Mol Sci, 2021, 22(8): 4162. doi: 10.3390/ijms22084162
    [46]
    YANG X, WANG J, ZHOU Z, et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation[J]. FASEB J, 2018, 32(6): 3264-3277. doi: 10.1096/fj.201701118R
    [47]
    JIANG R, ZHOU Z, LIAO Y, et al. The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition[J]. Toxicol Lett, 2019, 307: 26-40. doi: 10.1016/j.toxlet.2019.02.014
    [48]
    FANG S, GUO H, CHENG Y, et al. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1[J]. Cell Death Dis, 2018, 9(3): 396. doi: 10.1038/s41419-018-0432-1
    [49]
    ROJAS M, MARIE B, VIGNAUD J M, et al. High DNA damage by benzo[a]pyrene 7, 8-diol-9, 10-epoxide in bronchial epithelial cells from patients with lung cancer: comparison with lung parenchyma[J]. Cancer Lett, 2004, 207(2): 157-163. doi: 10.1016/j.canlet.2003.11.016
    [50]
    JIANG X, WU X, CHEN F, et al. The profiles and networks of miRNA, lncRNA, mRNA, and circRNA in benzo(a)pyrene-transformed bronchial epithelial cells[J]. J Toxicol Sci, 2018, 43(4): 281-289. doi: 10.2131/jts.43.281
    [51]
    XIAO M, CUI S, ZHANG L, et al. Benzo[a]pyrene diol epoxide-induced transformed cells identify the significance of hsa_circ_0051488, a ERCC1-derived circular RNA in pulmonary squamous cell carcinoma[J]. Mol Carcinog, 2021, 60(10): 684-701. doi: 10.1002/mc.23335
    [52]
    XIAO Z, YANG Z, XU M, et al. The Circ_CARM1 controls cell migration by regulating CTNNBIP1 in anti-benzo[a]pyrene-trans-7, 8-dihydrodiol-9, 10-epoxide-transformed 16HBE cells[J]. Toxicol Lett, 2021, 348: 40-49. doi: 10.1016/j.toxlet.2021.05.007
    [53]
    DAI X, ZHANG N, CHENG Y, et al. RNA-binding protein trinucleotide repeat-containing 6A regulates the formation of circular RNA circ0006916, with important functions in lung cancer cells[J]. Carcinogenesis, 2018, 39(8): 981-992. doi: 10.1093/carcin/bgy061
    [54]
    CHEN Q Y, DESMARAIS T, COSTA M. Metals and mechanisms of carcinogenesis[J]. Annu Rev Pharmacol Toxicol, 2019, 59: 537-554. doi: 10.1146/annurev-pharmtox-010818-021031
    [55]
    PAN S, WANG Q, ZHANG Q, et al. A novel circular RNA, circPUS7 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating Kirsten rat sarcoma viral oncogene homolog expression via sponging miR-770[J]. Metallomics, 2021, 13(7): mfab043. doi: 10.1093/mtomcs/mfab043
    [56]
    ZHOU M, LI L, CHEN B, et al. Circ-SHPRH suppresses cadmium-induced transformation of human bronchial epithelial cells by regulating QKI expression via miR-224-5p[J]. Ecotoxicol Environ Saf, 2021, 220: 112378. doi: 10.1016/j.ecoenv.2021.112378
    [57]
    XUE H, YU F, ZHANG X, et al. circ_0000638 inhibits neodymium oxide-induced bronchial epithelial cell inflammation through the miR-498-5p/NF-κB axis[J]. Ecotoxicol Environ Saf, 2020, 195: 110455. doi: 10.1016/j.ecoenv.2020.110455
    [58]
    LORENZO-GONZÁLEZ M, TORRES-DURÁN M, BARBOSA-LORENZO R, et al. Radon exposure: a major cause of lung cancer[J]. Expert Rev Respir Med, 2019, 13(9): 839-850. doi: 10.1080/17476348.2019.1645599
    [59]
    PEI W, TAO L, ZHANG L W, et al. Circular RNA profiles in mouse lung tissue induced by radon[J]. Environ Health Prev Med, 2017, 22(1): 36. doi: 10.1186/s12199-017-0627-6
    [60]
    LI W, PAULUHN J. Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine[J]. Clin Transl Med, 2017, 6(1): e19.
    [61]
    SHAO Y, JIANG Z, HE D, et al. Comprehensive analysis of the profiles of differentially expressed mRNAs, lncRNAs, and circRNAs in phosgene-induced acute lung injury[J]. Biomed Res Int, 2021, 2021: 6278526.
    [62]
    ZENG H, LI M, HUA Q, et al. Circular RNA circ_Cabin1 promotes DNA damage in multiple mouse organs via inhibition of non-homologous end-joining repair upon PM2.5 exposure[J]. Arch Toxicol, 2021, 95(10): 3235-3251. doi: 10.1007/s00204-021-03138-5
    [63]
    HUA Q, LIU Y, LI M, et al. Tobacco-related exposure upregulates Circ_0035266 to exacerbate inflammatory responses in human bronchial epithelial cells[J]. Toxicol Sci, 2021, 179(1): 70-83.
    [64]
    MA H, LU L, XIA H, et al. Circ0061052 regulation of FoxC1/Snail pathway via miR-515-5p is involved in the epithelial-mesenchymal transition of epithelial cells during cigarette smoke-induced airway remodeling[J]. Sci Total Environ, 2020, 746: 141181. doi: 10.1016/j.scitotenv.2020.141181
    [65]
    XUE M, PENG N, ZHU X, et al. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis[J]. Biochem Biophys Res Commun, 2021, 534: 553-560. doi: 10.1016/j.bbrc.2020.11.044
    [66]
    QIAO D, HU C, LI Q, et al. Circ-RBMS1 knockdown alleviates CSE-induced apoptosis, inflammation and oxidative stress via up-regulating FBXO11 through miR-197-3p in 16HBE cells[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 2105-2118. doi: 10.2147/COPD.S311222
    [67]
    ZHOU F, CAO C, CHAI H, et al. Circ-HACE1 aggravates cigarette smoke extract-induced injury in human bronchial epithelial cells via regulating toll-like receptor 4 by sponging miR-485-3p[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 1535-1547. doi: 10.2147/COPD.S304859
    [68]
    ZHANG C, GU S, KANG X. CircRNA circ_0006892 regulates miR-24/PHLPP2 axis to mitigate cigarette smoke extract-induced bronchial epithelial cell injury[J]. Biotechnol Appl Biochem, 2022, 69(2): 735-748. doi: 10.1002/bab.2148
    [69]
    CHENG Y, LUO W, LI Z, et al. CircRNA-012091/PPP1R13B-mediated lung fibrotic response in silicosis via endoplasmic reticulum stress and autophagy[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 380-391. doi: 10.1165/rcmb.2019-0017OC
    [70]
    FISCHER J W, LEUNG A K. CircRNAs: a regulator of cellular stress[J]. Crit Rev Biochem Mol Biol, 2017, 52(2): 220-233. doi: 10.1080/10409238.2016.1276882
    [71]
    SHARMA A R, BHATTACHARYA M, BHAKTA S, et al. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential[J]. Mol Ther Nucleic Acids, 2021, 25: 355-371. doi: 10.1016/j.omtn.2021.05.022
    [72]
    YANG L, LI C, TANG X. The impact of PM2.5 on the host defense of respiratory system[J]. Front Cell Dev Biol, 2020, 8: 91. doi: 10.3389/fcell.2020.00091
    [73]
    BOZINOVSKI S, VLAHOS R, ANTHONY D, et al. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link[J]. Br J Pharmacol, 2016, 173(4): 635-648. doi: 10.1111/bph.13198
    [74]
    DIDONATO J A, MERCURIO F, KARIN M. NF-κB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400. doi: 10.1111/j.1600-065X.2012.01099.x
  • Related Articles

    [1]JIANG Jinyun, MA He, LIU Na, ZHAO Ruihuan, JIANG Chenglan, HE Yuefeng. Molecular mechanisms and cancer-promoting roles of sodium arsenite in regulating FNDC3B expression in A549 cells[J]. Journal of Environmental and Occupational Medicine, 2025, 42(6): 691-698. DOI: 10.11836/JEOM24428
    [2]CHEN Tao, ZHANG Yunhui. Exploration of developmental toxicity mechanism of emerging environmental contaminants[J]. Journal of Environmental and Occupational Medicine, 2024, 41(12): 1331-1332. DOI: 10.11836/JEOM24524
    [3]LI Jingyu, YANG Wenhui, XU Yanyi. Research progress on effect of air pollution on depression and potential mechanisms[J]. Journal of Environmental and Occupational Medicine, 2024, 41(4): 457-465. DOI: 10.11836/JEOM23304
    [4]ZHAO Jinfeng, YAN Shiyu, WANG Rui, HAN Yuqing, PAN Yao. Role of oxidative stress in trichloroethylene-induced toxicity[J]. Journal of Environmental and Occupational Medicine, 2022, 39(12): 1423-1429. DOI: 10.11836/JEOM22259
    [5]PAN Bin, YANG Wenhui, XU Yanyi. Advances on mechanisms of hypothalamic-pituitary-adrenal axis in abnormal glucose metabolism induced by air pollution[J]. Journal of Environmental and Occupational Medicine, 2022, 39(7): 827-832. DOI: 10.11836/JEOM21488
    [6]GUO Xiaochen, GAO Ming, WU Nanxiang. Research progress on mechanisms of typical persistent organic pollutants involved in development of diabetes mellitus[J]. Journal of Environmental and Occupational Medicine, 2021, 38(5): 553-557. DOI: 10.13213/j.cnki.jeom.2021.20527
    [7]XU Jialin, XU Jiayu, JIA Guang. Advances on potential mechanisms of blood pressure increase induced by ambient fine particulate matters[J]. Journal of Environmental and Occupational Medicine, 2021, 38(1): 30-36. DOI: 10.13213/j.cnki.jeom.2021.20356
    [8]ZHU Hai-mei, WANG Shu-yan, CHANG Yan. Research progress on molecular mechanisms and evaluation methods of cadmium toxicity[J]. Journal of Environmental and Occupational Medicine, 2020, 37(11): 1132-1139. DOI: 10.13213/j.cnki.jeom.2020.20248
    [9]WANG Wan-jun, LI Zhou-zhou, XU Yan-yi. Advances on mechanisms of abnormal glucose metabolism induced by ambient fine particulate matters[J]. Journal of Environmental and Occupational Medicine, 2020, 37(4): 397-405. DOI: 10.13213/j.cnki.jeom.2020.19670
    [10]SUN Zhen-zhen , ZHANG Zhan , WANG Shou-lin . Molecular Mechanisms of Nuclear Receptors and MicroRNA in Regulation of Cytochrome P450[J]. Journal of Environmental and Occupational Medicine, 2014, 31(3): 229-233. DOI: 10.13213/j.cnki.jeom.2014.0056

Catalog

    Article views (371) PDF downloads (86) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return