LI Yuanyuan, PENG Xiaohong. Research progress on intestinal probiotics alleviating chronic heavy metal toxicity[J]. Journal of Environmental and Occupational Medicine, 2022, 39(2): 218-222. DOI: 10.11836/JEOM21296
Citation: LI Yuanyuan, PENG Xiaohong. Research progress on intestinal probiotics alleviating chronic heavy metal toxicity[J]. Journal of Environmental and Occupational Medicine, 2022, 39(2): 218-222. DOI: 10.11836/JEOM21296

Research progress on intestinal probiotics alleviating chronic heavy metal toxicity

Funds: This study was funded.
More Information
  • Corresponding author:

    PENG Xiaohong,Email:pxh815@163.com

  • Received Date: July 03, 2021
  • Accepted Date: November 11, 2021
  • Published Date: February 24, 2022
  • Human activities, especially industrial production, have aggravated the pollution of heavy metals in the environment, and especially after disrupting the food chain, such pollution can cause varying degrees of heavy metal poisoning in human beings. Studies have shown that exposure to heavy metals tends to upset the balance of the flora and further aggravate organ toxicity. Intestinal probiotics represented by Lactobacillus can actively adsorb heavy metal ions, promote their excretion, and reduce their induced oxidative stress injury and inflammatory response. Focusing on the chronic toxicity induced by long-term low-dose exposure to heavy metals, this article reviewed current pollution status of several common heavy metals (lead, cadmium, and mercury), analyzed the interaction between heavy metals, intestinal flora, and probiotics, and summarized proposed mechanisms of probiotics in mitigating chronic heavy metal toxicity, aiming to provide new ideas for effective prevention and treatment of organ toxicity induced by heavy metals.

  • [1]

    PRIYADARSHINI E, PRIYADARSHINI S S, PRADHAN N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis[J]. Appl Microbiol Biotechnol, 2019, 103(8): 3297-3316.

    doi: 10.1007/s00253-019-09685-3
    [2]

    NOUHA K, KUMAR R S, TYAGI R D. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods[J]. Bioresour Technol, 2016, 212: 120-129.

    doi: 10.1016/j.biortech.2016.04.021
    [3]

    GRANDJEAN P, LANDRIGAN P J. Neurobehavioural effects of developmental toxicity[J]. Lancet Neurol, 2014, 13(3): 330-338.

    doi: 10.1016/S1474-4422(13)70278-3
    [4]

    BJØRKLUND G, MUTTER J, AASETH J. Metal chelators and neurotoxicity: lead, mercury, and arsenic[J]. Arch Toxicol, 2017, 91(12): 3787-3797.

    doi: 10.1007/s00204-017-2100-0
    [5]

    GHOSH S, PRAMANIK S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome[J]. Arch Microbiol, 2021, 203(9): 5281-5308.

    doi: 10.1007/s00203-021-02516-y
    [6]

    YANG Q, LI Z, LU X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Sci Total Environ, 2018, 642: 690-700.

    doi: 10.1016/j.scitotenv.2018.06.068
    [7]

    中华人民共和国生态环境部. 生态环境部组织完成典型地区居民汞、镉、砷、铅、铬环境总暴露研究[EB/OL]. [2021-10-18]. http://www.mee.gov.cn/ywgz/fgbz/hjyjk/gzdt/201909/t20190912_733672.shtml.

    Ministry of Ecology and Environmental of the People’s Republic of China. Total human environmental exposure study of mercury, cadmium, arsenic, lead, and chromium for residents in typical areas, China[EB/OL]. [2021-10-18]. http://www.mee.gov.cn/ywgz/fgbz/hjyjk/gzdt/201909/t20190912_733672.shtml.

    [8]

    US Preventive Services Task Force, CURRY S J, KRIST A H, et al. Screening for elevated blood lead levels in children and pregnant women: US preventive services task force recommendation statement[J]. JAMA, 2019, 321(15): 1502-1509.

    doi: 10.1001/jama.2019.3326
    [9]

    EOM S Y, LEE Y S, LEE S G, et al. Lead, mercury, and cadmium exposure in the Korean general population[J]. J Korean Med Sci, 2018, 33(2): e9.

    doi: 10.3346/jkms.2018.33.e9
    [10]

    REUBEN A. Childhood lead exposure and adult neurodegenerative disease[J]. J Alzheimers Dis, 2018, 64(1): 17-42.

    doi: 10.3233/JAD-180267
    [11]

    NIE X, WANG N, CHEN Y, et al. Blood cadmium in Chinese adults and its relationships with diabetes and obesity[J]. Environ Sci Pollut Res Int, 2016, 23(18): 18714-18723.

    doi: 10.1007/s11356-016-7078-2
    [12]

    CIGAN S S, MURPHY S E, ALEXANDER B H, et al. Ethnic differences of urinary cadmium in cigarette smokers from the multiethnic cohort study[J]. Int J Environ Res Public Health, 2021, 18(5): 2669.

    doi: 10.3390/ijerph18052669
    [13]

    STAMATIS N, KAMIDIS N, PIGADA P, et al. Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in albacore (Thunnus alalunga, Bonnaterre, 1788) from the Aegean sea, Greece[J]. Int J Environ Res Public Health, 2019, 16(5): 821.

    doi: 10.3390/ijerph16050821
    [14]

    GOMES D F, MOREIRA R A, SANCHES N A O, et al. Dynamics of (total and methyl) mercury in sediment, fish, and crocodiles in an Amazonian Lake and risk assessment of fish consumption to the local population[J]. Environ Monit Assess, 2020, 192(2): 101.

    doi: 10.1007/s10661-020-8066-z
    [15]

    WEINHOUSE C, GALLIS J A, ORTIZ E, et al. A population-based mercury exposure assessment near an artisanal and small-scale gold mining site in the Peruvian Amazon[J]. J Expo Sci Environ Epidemiol, 2021, 31(1): 126-136.

    doi: 10.1038/s41370-020-0234-2
    [16]

    SCINICARIELLO F, BUSER M C. Blood cadmium and depressive symptoms in young adults (aged 20-39 years)[J]. Psychol Med, 2015, 45(4): 807-815.

    doi: 10.1017/S0033291714001883
    [17]

    BRANCA J J V, MARESCA M, MORUCCI G, et al. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier[J]. Int J Mol Sci, 2019, 20(23): 6010.

    doi: 10.3390/ijms20236010
    [18]

    REUBEN A, ELLIOTT M L, ABRAHAM W C, et al. Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife[J]. JAMA, 2020, 324(19): 1970-1979.

    doi: 10.1001/jama.2020.19998
    [19]

    HA E, BASU N, BOSE-O'REILLY S, et al. Current progress on understanding the impact of mercury on human health[J]. Environ Res, 2017, 152: 419-433.

    doi: 10.1016/j.envres.2016.06.042
    [20]

    KASTEN-JOLLY J, LAWRENCE D A. The cationic (calcium and lead) and enzyme conundrum[J]. J Toxicol Environ Health B Crit Rev, 2018, 21(6/8): 400-413.

    [21]

    GOTTI C, CABRINI D, SHER E, et al. Effects of long-term in vitro exposure to aluminum, cadmium or lead on differentiation and cholinergic receptor expression in a human neuroblastoma cell line[J]. Cell Biol Toxicol, 1987, 3(4): 431-440.

    doi: 10.1007/BF00119915
    [22]

    LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicol Appl Pharmacol, 2009, 238(3): 209-214.

    doi: 10.1016/j.taap.2009.01.029
    [23]

    JIN Y, ZHANG S, TAO R, et al. Oral exposure of mice to cadmium (II), chromium (VI) and their mixture induce oxidative- and endoplasmic reticulum-stress mediated apoptosis in the livers[J]. Environ Toxicol, 2016, 31(6): 693-705.

    doi: 10.1002/tox.22082
    [24]

    KOU H, FU Y, HE Y, et al. Chronic lead exposure induces histopathological damage, microbiota dysbiosis and immune disorder in the cecum of female Japanese quails (Coturnix japonica)[J]. Ecotoxicol Environ Saf, 2019, 183: 109588.

    doi: 10.1016/j.ecoenv.2019.109588
    [25]

    XIE S, JIANG L, WANG M, et al. Cadmium ingestion exacerbates Salmonella infection, with a loss of goblet cells through activation of Notch signaling pathways by ROS in the intestine[J]. J Hazard Mater, 2020, 391: 122262.

    doi: 10.1016/j.jhazmat.2020.122262
    [26]

    ZHAO Y, ZHOU C, GUO X, et al. Exposed to mercury-induced oxidative stress, changes of intestinal microflora, and association between them in mice[J]. Biol Trace Elem Res, 2021, 199(5): 1900-1907.

    doi: 10.1007/s12011-020-02300-x
    [27]

    BANNON D I, ABOUNADER R, LEES P S J, et al. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells[J]. Am J Physiol Cell Physiol, 2003, 284(1): C44-C50.

    doi: 10.1152/ajpcell.00184.2002
    [28]

    KAYAALTI Z, AKYÜZLÜ D K, SÖYLEMEZOĞLU T. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels[J]. Environ Res, 2015, 137: 8-13.

    doi: 10.1016/j.envres.2014.11.008
    [29]

    LI X, BREJNROD A D, ERNST M, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites[J]. Environ Int, 2019, 126: 454-467.

    doi: 10.1016/j.envint.2019.02.048
    [30]

    XIA J, LU L, JIN C, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2018, 209: 1-8.

    doi: 10.1016/j.cbpc.2018.03.007
    [31]

    WU J, WEN X W, FAULK C, et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice[J]. Toxicol Sci, 2016, 151(2): 324-333.

    doi: 10.1093/toxsci/kfw046
    [32]

    GAO B, CHI L, MAHBUB R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways[J]. Chem Res Toxicol, 2017, 30(4): 996-1005.

    doi: 10.1021/acs.chemrestox.6b00401
    [33]

    SITARIK A R, ARORA M, AUSTIN C, et al. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota[J]. Environ Int, 2020, 144: 106062.

    doi: 10.1016/j.envint.2020.106062
    [34]

    LILLY D M, STILLWELL R H. Probiotics: growth-promoting factors produced by microorganisms[J]. Science, 1965, 147(3659): 747-748.

    doi: 10.1126/science.147.3659.747
    [35]

    BEVERIDGE T J, MURRAY R G. Sites of metal deposition in the cell wall of Bacillus subtilis[J]. J Bacteriol, 1980, 141(2): 876-887.

    doi: 10.1128/jb.141.2.876-887.1980
    [36]

    XING S C, CHEN J Y, LV N, et al. Biosorption of lead (Pb2+) by the vegetative and decay cells and spores of Bacillus coagulans R11 isolated from lead mine soil[J]. Chemosphere, 2018, 211: 804-816.

    doi: 10.1016/j.chemosphere.2018.08.005
    [37]

    VICAS S I, LASLO V, TIMAR A V, et al. Nano selenium-enriched probiotics as functional food products against cadmium liver toxicity[J]. Materials (Basel), 2021, 14(9): 2257.

    doi: 10.3390/ma14092257
    [38]

    KIM J J, KIM Y S, KUMAR V. Heavy metal toxicity: an update of chelating therapeutic strategies[J]. J Trace Elem Med Biol, 2019, 54: 226-231.

    doi: 10.1016/j.jtemb.2019.05.003
    [39]

    MATHIVANAN K, CHANDIRIKA J U, MATHIMANI T, et al. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment[J]. Ecotoxicol Environ Saf, 2021, 208: 111567.

    doi: 10.1016/j.ecoenv.2020.111567
    [40]

    ZHAI Q, TIAN F, ZHAO J, et al. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier[J]. Appl Environ Microbiol, 2016, 82(14): 4429-4440.

    doi: 10.1128/AEM.00695-16
    [41]

    FU J, WANG T, XIAO X, et al. Clostridium butyricum ZJU-F1 benefits the intestinal barrier function and immune response associated with its modulation of gut microbiota in weaned piglets[J]. Cells, 2021, 10(3): 527.

    doi: 10.3390/cells10030527
    [42]

    XING S C, HUANG C B, MI J D, et al. Bacillus coagulans R11 maintained intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs[J]. Environ Pollut, 2019, 255: 113139.

    doi: 10.1016/j.envpol.2019.113139
    [43]

    ZHAI Q, LIU Y, WANG C, et al. Lactobacillus plantarum CCFM8661 modulates bile acid enterohepatic circulation and increases lead excretion in mice[J]. Food Funct, 2019, 10(3): 1455-1464.

    doi: 10.1039/C8FO02554A
    [44]

    ZHAI Q, LIU Y, WANG C, et al. Increased cadmium excretion due to oral administration of Lactobacillus plantarum strains by regulating enterohepatic circulation in mice[J]. J Agric Food Chem, 2019, 67(14): 3956-3965.

    doi: 10.1021/acs.jafc.9b01004
    [45]

    HU T, SONG J, ZENG W, et al. Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion[J]. Food Chem Toxicol, 2020, 143: 111533.

    doi: 10.1016/j.fct.2020.111533
    [46]

    JIANG X, GU S, LIU D, et al. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades[J]. Front Microbiol, 2018, 9: 2425.

    doi: 10.3389/fmicb.2018.02425
    [47]

    MAJLESI M, SHEKARFOROUSH S S, GHAISARI H R, et al. Effect of probiotic Bacillus coagulans and Lactobacillus plantarum on alleviation of mercury toxicity in rat[J]. Probiotics Antimicrob Proteins, 2017, 9(3): 300-309.

    doi: 10.1007/s12602-016-9250-x
    [48]

    LI B, JIN D, YU S, et al. In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the alleviative effect on lead toxicity[J]. Nutrients, 2017, 9(8): 845.

    doi: 10.3390/nu9080845

Catalog

    Article views (2894) PDF downloads (273) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return