RUAN Wenli, FAN Lili, XU Huifen, SONG Qian, HE Rui, DIAO Heng, ZHANG Yuqiong, ZHANG Aihua, WANG Dapeng. Role of mitogen-inducible gene 6 in the activation of human hepatic stellate cells and deposition of extracellular matrix induced by sodium arsenite[J]. Journal of Environmental and Occupational Medicine, 2022, 39(2): 200-205. DOI: 10.11836/JEOM21293
Citation: RUAN Wenli, FAN Lili, XU Huifen, SONG Qian, HE Rui, DIAO Heng, ZHANG Yuqiong, ZHANG Aihua, WANG Dapeng. Role of mitogen-inducible gene 6 in the activation of human hepatic stellate cells and deposition of extracellular matrix induced by sodium arsenite[J]. Journal of Environmental and Occupational Medicine, 2022, 39(2): 200-205. DOI: 10.11836/JEOM21293

Role of mitogen-inducible gene 6 in the activation of human hepatic stellate cells and deposition of extracellular matrix induced by sodium arsenite

  • Background Arsenic is a well-known environmental toxicant. Hepatic fibrosis could occur dueto excessive or long-term exposure to arsenic, while associated molecular mechanisms remain undefined. Mitogen-inducible gene 6 (Mig-6) exhibits a protective effect on numerous diseases or cancers. However, the specific role of Mig-6 in the mechanisms of arsenite-induced hepatic fibrosis remains indistinct.

    Objective To investigate the specific role of Mig-6 in the activation of hepatic stellate cells (HSC) and the deposition of extracellular matrix (ECM) induced by sodium arsenite (NaAsO2).

    Methods Human hepatic stellate cells (Lx-2) were treated with 0, 1.875, 3.75, 7.5, and 15 μmol·L−1 of NaAsO2 for 24 h, or with 7.5 μmol·L−1 NaAsO2 for 0, 12, 24, 48, and 72 h. Additionally, Lx-2 cells were transfected by pcDNA3.1(+)/Mig-6, then treated with 7.5 μmol·L−1 NaAsO2 for 24 h; a blank control group, a pcDNA3.1(+)-control group, a pcDNA3.1(+)/Mig-6 group, and an arsenic (7.5 μmol·L−1 NaAsO2) group were also set up. After transfection, the cells and culture supernatants were collected, and the protein levels of Mig-6, α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) in Lx-2 cells were identified by Western blotting analysis; moreover, the secretion levels of main ECM components in supernatants such as hyaluronic acid (HA), laminin (LN), collagens IV (COL-IV), and procollagen-III (PIIINP) were tested by ELISA.

    Results The Mig-6 expression decreased in the 3.75, 7.5, and 15 μmol·L−1 NaAsO2 groups (0.561±0.095, 0.695±0.048, and 0.401±0.030) compared to the control group (1.000±0.000) in Lx-2 cells (P<0.05). After administration with 7.5 μmol·L−1 of NaAsO2 for 24, 48, and 72 h, the Mig-6 expression (0.856±0.036, 0.515±0.077, 0.491±0.060) decreased compared with the 0 h group (1.000±0.000) (P<0.05). After over-expression of Mig-6, the results of Lx-2 activation related protein levels showed that compared to the control group, the α-SMA and TGF-β1 expression were up-regulated in the arsenic group (P<0.05); meanwhile, the α-SMA and TGF-β1 in the Mig-6 over-expression combined arsenic exposure group reduced compared to the arsenic (7.5 μmol·L−1) group (P<0.05). The results of ELISA showed that compared with the control group, the HA, LN, PIIINP, COL-IV in the arsenic group were up-regulated (P<0.05); while compared to the arsenic group, the HA, LN, PIIINP, and COL-IV in the Mig-6 over-expression combined with arsenic exposure group were decreased (P<0.05).

    Conclusion Arsenic down-regulates Mig-6 expression in HSC, and over-expression of Mig-6 can reverse the activation of HSC and ECM deposition induced by arsenic exposure. It suggests that Mig-6 plays a protective role in arsenic-induced HSC activation and ECM deposition.

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return