人支气管上皮样细胞中苯并[a]芘代谢物-DNA加合物图谱:基于染色质免疫共沉淀测序技术

冀婷玉, 曹彬, 吕懿, 佟晓敏, 孙宏宇, 郑金平

冀婷玉, 曹彬, 吕懿, 佟晓敏, 孙宏宇, 郑金平. 人支气管上皮样细胞中苯并[a]芘代谢物-DNA加合物图谱:基于染色质免疫共沉淀测序技术[J]. 环境与职业医学, 2024, 41(3): 323-329. DOI: 10.11836/JEOM23333
引用本文: 冀婷玉, 曹彬, 吕懿, 佟晓敏, 孙宏宇, 郑金平. 人支气管上皮样细胞中苯并[a]芘代谢物-DNA加合物图谱:基于染色质免疫共沉淀测序技术[J]. 环境与职业医学, 2024, 41(3): 323-329. DOI: 10.11836/JEOM23333
JI Tingyu, CAO Bin, LYU Yi, TONG Xiaomin, SUN Hongyu, ZHENG Jinping. Map of benzo[a]pyrene metabolites-DNA adducts in human bronchial epithelial-like cells: Based on chromatin immunoprecipitation followed by sequencing technology[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 323-329. DOI: 10.11836/JEOM23333
Citation: JI Tingyu, CAO Bin, LYU Yi, TONG Xiaomin, SUN Hongyu, ZHENG Jinping. Map of benzo[a]pyrene metabolites-DNA adducts in human bronchial epithelial-like cells: Based on chromatin immunoprecipitation followed by sequencing technology[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 323-329. DOI: 10.11836/JEOM23333

人支气管上皮样细胞中苯并[a]芘代谢物-DNA加合物图谱:基于染色质免疫共沉淀测序技术

基金项目: 山西省重点研发计划(国际合作)项目(201703D421021);山西省“1331工程”提质增效项目(2021-5-2-2-B1);山西省基础研究计划(自由探索类)青年科学研究项目(20210302124301)
详细信息
    作者简介:

    并列第一作者。

    冀婷玉(1998—),女,硕士生;E-mail:jitingyu0211@163.com

    曹彬(1993—),男,硕士生;E-mail:bcao@cdc.zj.cn

    通讯作者:

    郑金平,Email:zheng_jp@sxmu.edu.cn

  • 中图分类号: R11

Map of benzo[a]pyrene metabolites-DNA adducts in human bronchial epithelial-like cells: Based on chromatin immunoprecipitation followed by sequencing technology

Funds: This study was funded.
More Information
  • 摘要:
    背景

    苯并[a]芘(BaP)的活性代谢产物7,8-二羟-9,10-环氧苯并[a]芘(BPDE)可与DNA加合,但BPDE-DNA加合物图谱尚不明确。

    目的

    采用染色质免疫共沉淀测序技术(ChIP-Seq),在全基因组水平上鉴定BPDE加合位点分布及加合基因,为深入研究BaP的毒作用机制提供依据。

    方法

    人支气管上皮样细胞16HBE培养至第四代达对数生长期。收获细胞并加入染色质免疫共沉淀裂解缓冲液,将裂解产物等分为实验组和对照组,实验组添加终浓度20 μmol·L−1的BPDE溶液,对照组添加相同体积的二甲基亚砜溶液,在37 ℃环境下孵育24 h。超声获得100~500 bp的染色质小片段。使用BPDE特异性抗体(anti-BPDE 8E11)富集与BPDE加合的DNA片段,高通量测序检测BPDE加合位点,使用MEME和DREME软件对前1000个峰序列进行模体分析,注释BPDE在全基因组水平的加合靶基因,并通过生物信息学技术对BPDE加合靶基因进行基因本体论(GO)功能分析和京都基因与基因组百科全书(KEGG)通路分析。

    结果

    高通量测序共检测出842个BPDE结合位点,在各染色体上均有分布。BPDE可以与基因编码区和非编码区共价结合,73.9%的结合位点分布在基因间区,19.6%分布在内含子区,上游2千碱基区域、外显子区、下游2千碱基区域及5'非翻译区也有少量分布。对前1000个峰序列进行分析,寻找到4条可靠的模体,发现富含鸟嘌呤(G)和腺嘌呤(A)的位点易于结合。对结合位点进行富集,共鉴定出199个BPDE加合靶基因,大多分布在1号、5号、7号、12号、17号和X染色体上。GO分析显示,靶基因主要富集于核酸和蛋白质结合,参与调节催化活性、转运活性、翻译延伸因子活性,在细胞分裂、分化、运动、物质运输和信息传递方面发挥重要作用。KEGG分析显示靶基因主要富集于心血管疾病、癌症、免疫炎症反应等相关通路。

    结论

    利用ChIP-Seq在全基因组水平上共鉴定出199个BPDE加合靶基因,主要影响细胞分裂、分化、运动、物质运输和信息传递等生物学功能,与心血管疾病、肿瘤及免疫炎症反应密切相关。

     

    Abstract:
    Background

    The active metabolite of benzo[a]pyrene (BaP), 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE), can form adducts with DNA, but the spectrum of BPDE-DNA adducts is unclear.

    Objective

    To identify the distribution of BPDE adduct sites and associated genes at the whole-genome level by chromatin immunoprecipitation followed by sequencing (ChIP-Seq), and serve as a basis for further exploring the toxicological mechanisms of BaP.

    Methods

    Human bronchial epithelial-like cells (16HBE) were cultured to the fourth generation inthe logarithmic growth phase. Cells were harvested and added to chromatin immunoprecipitation lysis buffer. The lysate was divided into experimental and control groups. The experimental group received a final concentration of 20 μmol·L−1 BPDE solution, while the control group received an equivalent volume of dimethyl sulfoxide solution. The cells were then incubated at 37 °C for 24 h. Chromatin fragments of 100-500 bp were obtained through sonication. BPDE-specific antibody (anti-BPDE 8E11) was used to enrich DNA fragments with BPDE adducts. High-throughput sequencing was conducted to detect BPDE adduct sites. The top 1000 peak sequences were subjected to motif analysis using MEME and DREME software. BPDE adduct target genes at the whole-genome level were annotated, and Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of BPDE adduct target genes were conducted using bioinformatics techniques.

    Results

    The high-throughput sequencing detected a total of 842 BPDE binding sites, distributed across various chromosomes. BPDE covalently bound to both coding and non-coding regions of genes, with 73.9% binding sites located in intergenic regions, 19.6% in intronic regions, and smaller proportions in upstream 2 kilobase, exonic, downstream 2 kilobase, and 5' untranslated regions. Regarding the top 1000 peak sequences, four reliable motifs were identified, revealing that sites rich in adenine (A) and guanine (G) were prone to binding. Through the enrichment analysis of binding sites, a total of 199 BPDE-adduct target genes were identified, with the majority located on chromosomes 1, 5, 7, 12, 17, and X. The GO analysis indicated that these target genes were mainly enriched in nucleic acid and protein binding, participating in the regulation of catalytic activity, transport activity, translation elongation factor activity, and playing important roles in cell division, differentiation, motility, substance transport, and information transfer. The KEGG analysis revealed that these target genes were primarily enriched in pathways related to cardiovascular diseases, cancer, and immune-inflammatory responses.

    Conclusion

    Using ChIP-Seq, 199 BPDE adduct target genes at genome-wide level are identified, impacting biological functions such as cell division, differentiation, motility, substance transport, and information transfer. These genes are closely associated with cardiovascular diseases, tumors, and immune-inflammatory responses.

     

  • 苯并[a]芘(benzo[a]pyrene, BaP)作为多环芳烃环境污染物的典型代表,具有致畸、致癌、致突变作用[1]。其进入人体后,经细胞色素P450代谢形成活性代谢产物7,8-二羟-9,10-环氧苯并[a]芘(7,8-dihydroxy-9,10-epoxybenzo[a]pyrene, BPDE)。BPDE可与DNA的鸟嘌呤(guanine, G)的N2位结合形成N2-BPDE-dG加合物,并主要诱导胞嘧啶鸟嘌呤(cytosine-guanine, CG)到腺嘌呤胸腺嘧啶(adenine-thymine, AT)突变,诱发肿瘤等多种疾病发生[2]。通过32P后标记、液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry, LC-MS/MS)等,针对BPDE-DNA加合物进行定性定量检测,能够很好地反映生物有效作用剂量信息,可作为接触BaP及DNA损伤的生物标志物[35]。然而,由于DNA加合物的发生频率低,加合物分析也一直具有很大的挑战性。以往研究更多关注BPDE-DNA加合物水平与相关基因转录水平的相关性[69],无法精确识别BPDE-DNA加合位点及加合基因分布规律。本研究拟通过一种基于染色质免疫共沉淀测序(chromatin immunoprecipitation followed by sequencing, ChIP-seq)的技术,在全基因组上分析BPDE-DNA加合物的分布规律。

    获取人支气管上皮样细胞株16HBE(广州吉妮欧,中国)DNA裂解物,将其等分,设对照组与BPDE染毒组进行处理,将DNA进行片段化,基于染色质免疫共沉淀技术(chromatin Immunoprecipitation, ChIP)的原理,通过BPDE特异性抗体(anti-BPDE 8E11,Trevigen,美国)对16HBE细胞富集到的BPDE-DNA加合物进行高通量测序以获得BPDE-DNA加合物形成的全基因组图谱。

    使用含10%胎牛血清(武汉普诺赛,中国)和1%青链霉素(武汉博士德,中国)的MEM培养基(Gibco,美国),于37 ℃、5% CO2,相对湿度90%的培养箱中培养16HBE细胞。使用0.25%的胰酶(武汉博士德,中国)进行传代,将培养至第四代的16HBE细胞接种到10 cm的培养皿中。待细胞密度达到70%~80%且生长状态良好时,开始后续实验。

    细胞加入终浓度1%的甲醛(Sigma,美国)室温交联10 min后用10×甘氨酸(Merck,美国)终止交联,随后用预冷的磷酸盐缓冲液(上海生工生物工程,中国)洗涤后收集细胞并加入染色质免疫共沉淀裂解缓冲液,冰上孵育。染色质免疫共沉淀裂解缓冲液由0.01%十二烷基硫酸钠(北京博奥拓达,中国)、1.1%曲拉通X-100(北京博奥拓达,中国)、1.2 mmol·L−1乙二胺四乙酸(上海易恩化学,中国)、16.7 mmol·L−1三羟甲基氨基甲烷盐酸盐(北京索莱宝,中国)、167 mmol·L−1氯化钠(北京索莱宝,中国)配成,pH=8.1。将裂解产物等分为实验组和对照组,实验组添加终浓度20 μmol·L−1的BPDE溶液,对照组添加相同体积的二甲基亚砜(Sigma,美国)溶液,在37 ℃环境下培养24 h。使用SCIENTZ-ⅡD型超声破碎仪(宁波新芝生物,中国)获取100~500 bp的染色质小片段。超声处理后,12000×g离心10 min,以除去不溶性物质,加入1 μL核糖核酸酶A(10 mg·mL−1)。从实验组和对照组中分别取10 μL(2%)上清液作为阳性对照组。采用ChIP技术,每组加入anti-BPDE 4 μg及A/G磁珠富集BPDE-DNA加合物。

    委托安诺优达公司(中国北京)使用高通量测序检测BPDE加合基因。对前1000个峰序列进行模体分析,搜索模式为每个模体在每个序列中最多出现一次,并且允许模体在其互补链上出现。模体分析使用软件DREME(4.12.0版)和MEME(4.12.0版)。

    利用微生信平台(https://www.bioinformatics.com.cn/)对BPDE加合基因进行基因本体论(Gene Ontology, GO)富集分析和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路分析,筛选标准为P<0.05。

    通过对比实验组与对照组样品测序结果,对16HBE细胞全基因组BPDE结合位点进行定位与注释。最终获得了842个BPDE结合位点,平均长度为496 bp,富集达到4倍到9倍的峰占比最大。BPDE可以与基因编码区和非编码区共价结合,73.9%的结合位点分布在基因间区,19.6%分布在内含子区,3.2%分布在上游2千碱基区,外显子区、下游2千碱基区域及5'非翻译区也有少量分布(图1A)。BPDE结合位点在人类染色体上的分布以竖线标示(图1B),每条染色体上均有BPDE结合位点的分布。

    图  1  BPDE结合位点分析图
    A为不同基因组区域的峰值分布图,B为BPDE结合位点在人类染色体上的分布图。MT为线粒体染色体。
    Figure  1.  Analysis charts of BPDE binding sites

    对前1000个峰序列进行分析,以寻找可靠的模体。共鉴定出四条典型的模体序列,在这四条序列中G和A的含量较高(见补充材料图S1图S2)。

    在获得的842个BPDE结合位点中,注释为基因片段的有218个,这些结合位点涵盖了199个加合基因。有关BPDE加合基因的详细列表以及在染色体上的分布情况,请参见表1

    表  1  BPDE加合基因在染色体上的分布
    Table  1.  Distribution of BPDE adduct genes on chromosomes
    染色体
    位置
    加合基因
    数量/个
    加合基因名称
    1号20GPATCH2MRPL37EDEM3C1orf21TRIM67ARF1GBAP1GNG4MARCKSL1PLD5PDE4BRYR2ZNF847PAL355482.1LINC01748AL023755.1AL356108.1AL359924.1LYPD8MROH7-TTC4
    2号11OSBPL6CYP20A1LRRFIP1CNTNAP5ALKLRRTM4AC068051.1BMPR2MBD5LINC02613AC007402.1
    3号12NEK11SPATA16STXBP5LZNF385DCPB1FBXL2SYNPROSTNGRM7EGFEM1PLINC02614TFP1
    4号5LDB2ADH7AC004053.1AC093772.1LINC02511
    5号19WDR70CDH9CDH18FBXL17MTMR12ADAMTS12ICE1EDIL3ESM1GUSBP1AC091862.1NR2F1-AS1AC106799.2AC112206.2LINC02112AC010451.1LINC01950LINC01847AC104109.4
    6号9MCM9KHDRBS2SLC22A2MTO1AL590867.1LINC00240AL354892.1AL138830.2OR5V1
    7号14THSD7ALAMB4SNX8CHCHD3DPP6ELMO1GRM8ABCA13STK31EPHB4XRCC2SSPOAC004917.1AC073878.1
    8号4PABPC1ARHGAP39RPL8C8orf89
    9号10DNM1GOLM1TSTD2RGS3GNA14BNC2TUBB4BEEF1A1P5VPS13ASLC25A25-AS1
    10号7SH2D4BCTNNA3AC022387.1AL157834.1RPL13AP5C10orf143NSUN6
    11号12MYBPC3INTS4DLG2NELL1TMEM135PLEKHA7MMP26PRDM10DCDC1AP000893.2AC090458.1DISC1FP1
    12号18CHFRACACBTESCSLC8B1NT5DC3NME2P1RNFT2KLRG1RPL14P1RITA1DDX23AC024940.1NELL2CFAP54TEAD4LRCOL1AC124947.1AC090115.1
    13号2MTUS2AL354809.1
    14号5SCFD1CHD8GPHNLINC02291AL161757.4
    15号5UNC13CCASC4PPIP5K1DNAAF4AGBL1
    16号5ITGALKIAA0556EARS2ATF7IP2GAN
    17号12RAI1WBP2TAOK1STX8RAB37ACTG1P4HBZNF286AKIAA0753RPL13P12LINC02086AC139530.2
    18号1GREB1L
    19号4CACNG7EEF2BSGCAPN12
    20号6NINLSALL4PRPF6WFDC2KCNB1WFDC11
    21号4HUNKNCAM2TIAM1PPIAP22
    22号1ARHGAP8
    X13NEXMIFKIF4ATEX11MORF4L2IRS4MSNZNF711AC107419.1XISTPTCHD1-ASTSIXMIR325HGAL807742.1
    下载: 导出CSV 
    | 显示表格

    对BPDE加合基因进行GO富集分析,获得在分子功能、生物过程、细胞成分每个层面的前10个GO条目(图2)。在分子功能层面,BPDE加合基因主要富集在突触融合蛋白结合(GO:0019905)、鸟苷三磷酸酶活性(GO:0003924)、微管结合(GO:0015631)、可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(GO:0000149)、磷酸转移酶活性磷酸基团受体(GO:0016776)、突触后结构成分(GO:0099186)、突触的结构成分(GO:0098918)、翻译延伸因子活性(GO:0003746)、钙黏蛋白(GO:0045296)、多聚腺苷酸结合(GO:0008143);在生物过程层面主要富集于谷氨酸受体信号通路(GO:0007215)、毒素转运(GO:1901998)、膜对接(GO:0022406)、基于肌动蛋白丝运动的调节(GO:1903115)、蛋白质在突触后特化膜上的定位(GO:0099633)、神经递质受体在突触后特化膜上的定位(GO:0099645)、囊泡对接(GO:0048278)、通过膜束缚定位细胞器(GO:0140056)、突触后组织(GO:0099173)、突触后膜神经递质受体水平的调节(GO:0099072);在细胞成分层面主要富集于不对称突触(GO:0032279)、突触后膜(GO:0045211)、神经元间突触(GO:0098984)、突触膜(GO:0097060)、突触后密度(GO:0014069)、突触后特化(GO:0099572)、肌膜(GO:0042383)、神经元致密核心囊泡(GO:0098992)、阳离子通道复合体(GO:0034703)、肌原纤维(GO:0030016)。

    图  2  BPDE加合基因GO分析
    使用圆形展示富集结果。从外到内依次为:分类(颜色一样的为同一分类)和GO条目名,条目总基因数(颜色表示该条目富集的P),BPDE加合基因与该条目重叠的基因数,富集因子。
    Figure  2.  GO analysis of BPDE adduct genes

    对BPDE加合基因进行KEGG信号通路富集分析,以获得这些靶基因富集的生物学通路,前10个通路分别为:致心律失常性右心室心肌病、肥厚性梗阻型心肌病、Hippo信号通路、扩张型心肌病、白细胞跨内皮迁移、磷脂酰醇酶D信号通路、催产素信号通路、紧密连接、谷氨酸能突触和丙酮酸盐代谢等信号通路(图3)。

    图  3  BPDE加合基因KEGG富集分析
    Figure  3.  KEGG enrichment analysis of BPDE adduct genes

    BaP是我们生活中广泛接触的环境多环芳烃之一[10],国际癌症研究机构明确列为“一类致癌物”,其进入人体后,经代谢形成内源性活性产物BPDE[11]。BPDE具有亲电子性,可以与DNA共价结合,形成BPDE-DNA加合物,直接阻碍关键基因的转录或导致DNA损伤,引发基因突变[812]。尽管细胞能够修复多种类型的DNA损伤,但在修复功能缺陷的情况下,DNA损伤会逐渐积累,最终导致突变的发生[13]。BPDE-DNA加合物水平可作为疾病的风险性生物标志物,各种癌症和肺部炎症与BPDE-DNA加合物水平升高显著相关[1417]。常用的检测BPDE-DNA加合物的方法都只是基于单基因或部分基因分析,很少有研究在全基因组水平上探索BPDE-DNA加合物的形成及分布规律。本研究采用ChIP-Seq技术,在全基因组水平上探究BPDE加合基因及分布规律,旨在为深入研究BaP的毒作用机制提供依据。

    在本研究鉴定的4条可靠的模体序列中,A和G的含量相对较高,这表明富含A和G的位点易于结合。有研究表明,BPDE主要在G的N2位置形成稳定的DNA加合物,若核苷酸切除修复没有有效清除这些DNA加合物,便会导致突变和癌症[18]。我们的结果也表示BPDE主要与富含G和A的DNA序列结合,从而调控基因的表达。共发现842个BPDE结合位点,在各染色体上均有分布。这些结合位点涵盖了199个基因,主要分布于1号、5号、7号、12号、17号以及X染色体。有研究表明,BPDE-DNA加合物在人肺上皮细胞系中的结合热点位于着丝粒区域附近,比如在染色体7、10、11和12上[19]。这与我们的研究结果相符,BPDE结合位点在染色体上并非随机分布。Li等[12]研究中发现在人正常肺上皮细胞BEAS-2B中BPDE可以与基因的编码区和非编码区共价结合,但在编码区中存在偏好性。然而,本研究发现在16HBE细胞中,BPDE结合位点大部分位于基因间区和内含子区。通常人们只关注直接编码蛋白质的基因编码区,从而忽略了对非编码区的研究。已经有众多研究指出,基因调控过程中非编码区域也发挥着关键的作用[20]。例如,在癌症遗传学中,人们越来越意识到仅关注蛋白质编码基因不足以解释肿瘤遗传因素的全部复杂性[2122]。内含子作为基因编码区却不编码蛋白而一直被忽略,但现有研究发现其可以通过影响转录速率、核输出和转录本稳定性来提高转录水平;另外,内含子还可以调节mRNA翻译的效率[23]。这提示研究BaP的毒作用机制也需要关注基因间区和内含子区的调节作用。

    GO分析结果显示,BPDE加合靶基因主要富集于核酸和蛋白质结合,参与调控翻译延伸因子活性、催化活性、转运活性等。提示这些基因产物具备与RNA结合的能力,并具有转运物质和调节翻译延伸因子活性的功能。因此,推测BPDE加合靶基因可能通过调节翻译延伸因子活性在翻译过程中发挥作用,进而影响蛋白质的合成。此外,BPDE-DNA加合物的形成影响细胞分裂、分化及运动等生物学功能,在物质运输和信息传递方面扮演着关键的角色。

    KEGG通路富集分析显示BPDE加合靶基因主要富集于心血管疾病、癌症、免疫炎症反应等相关通路,涉及的相关基因有RYR2、CTNNA3、ACTG1、CACNG7、MYBPC3、BMPR2、DLG2、TEAD4、ITGAL、MSN等。Piberger等[8]通过高通量的实时定量聚合酶链反应量化BPDE对DNA损伤、DNA修复、氧化应激、细胞周期阻滞、细胞增殖和凋亡等95个基因转录水平的影响,发现BPDE激活了DNA损伤信号传导、p53和激活蛋白-1依赖性信号传导、氧化应激和凋亡。与本研究相比,Piberger等的研究仅涉及对95个基因的分析,主要关注特定基因的转录水平变化。众所周知,RYR2负责在心脏和骨骼肌中调控钙离子释放,RYR2基因突变可能导致一些心脏疾病,如心律失常。研究表明,RYR2作为心肌细胞成熟的调节因子与未折叠蛋白反应有关,RYR2功能障碍会激活未折叠蛋白反应阻碍心肌细胞成熟[24]。已有文献表明,子宫内受到BaP暴露会导致子代大鼠晚年心血管功能障碍[25]。BaP通过激活芳烃受体/细胞色素P450家族成员1A1信号通路,诱导BPDE-DNA加合物生成,引发斑马鱼胚胎心脏固有细胞凋亡[26]。然而,目前关于BaP引起心脏缺陷的具体机制以及涉及的相关信号通路尚不明确。本研究也发现BPDE可以与RYR2等基因加合从而调控致心律失常性右心室心肌病、肥厚性梗阻型心肌病信号通路,这为进一步探索BaP引起心血管疾病的相关机制提供了方向。DLG2是11号染色体上的一个肿瘤抑制基因,之前已经证实与DNA修复有关,DLG2过表达会促进p53介导的细胞凋亡[27]DLG2表达缺失是导致各种肿瘤细胞增殖及存活率降低的原因[2829]。因此,BPDE可能通过与DLG2加合从而参与DNA损伤反应、肿瘤抑制基因调控及细胞凋亡等过程。TEAD4作为Hippo信号通路的下游分子,调控细胞增殖、细胞存活、组织再生,在癌症中发挥重要的作用[30]。本研究富集到的癌症相关的信号通路除了显著的Hippo信号通路外,也有Ras信号通路。既往有关BaP引起肺癌的机制研究主要集中在p53信号通路[31]。因此,我们的研究也提供了另一种可能,BaP还可以通过与TEAD4等基因加合调控Hippo信号通路从而引发各种癌症。也有研究发现BPDE-DNA加合物的形成也会诱导K-Ras基因突变,这种突变与吸烟诱导的癌症突变一致[32]。这可能与BPDE-DNA加合物诱导的Ras信号通路激活有关。ITGAL在免疫系统中发挥着重要作用,其突变或异常可能会影响免疫细胞的正常黏附和相互作用。此外,ITGAL也作为肿瘤预后的生物标志物,调节肿瘤免疫微环境,导致预后不良[3334]。妊娠中期暴露于BaP的母鼠其后代由于T细胞中存在BPDE-DNA加合物,更易产生免疫抑制,但机制尚不明确[3]。我们推测这或许与ITGAL等BPDE加合基因有关。以上结果表明BPDE-DNA加合物的形成与心血管疾病、癌症、免疫炎症反应密切相关。

    综上所述,本研究通过ChIP-Seq对BPDE加合基因及加合位点进行全基因组分析,发现富含G和A的位点易于结合,大多数结合位点分布在基因间区和内含子区。同时,我们鉴定了199个BPDE加合基因,参与细胞分裂、分化、运动、物质运输及信息传递等生物功能,并且可能与心血管疾病、癌症、免疫炎症反应等疾病有关。这为深入研究BaP的毒作用机制并寻找潜在的治疗靶点提供了依据。

  • 图  1   BPDE结合位点分析图

    A为不同基因组区域的峰值分布图,B为BPDE结合位点在人类染色体上的分布图。MT为线粒体染色体。

    Figure  1.   Analysis charts of BPDE binding sites

    图  2   BPDE加合基因GO分析

    使用圆形展示富集结果。从外到内依次为:分类(颜色一样的为同一分类)和GO条目名,条目总基因数(颜色表示该条目富集的P),BPDE加合基因与该条目重叠的基因数,富集因子。

    Figure  2.   GO analysis of BPDE adduct genes

    图  3   BPDE加合基因KEGG富集分析

    Figure  3.   KEGG enrichment analysis of BPDE adduct genes

    表  1   BPDE加合基因在染色体上的分布

    Table  1   Distribution of BPDE adduct genes on chromosomes

    染色体
    位置
    加合基因
    数量/个
    加合基因名称
    1号20GPATCH2MRPL37EDEM3C1orf21TRIM67ARF1GBAP1GNG4MARCKSL1PLD5PDE4BRYR2ZNF847PAL355482.1LINC01748AL023755.1AL356108.1AL359924.1LYPD8MROH7-TTC4
    2号11OSBPL6CYP20A1LRRFIP1CNTNAP5ALKLRRTM4AC068051.1BMPR2MBD5LINC02613AC007402.1
    3号12NEK11SPATA16STXBP5LZNF385DCPB1FBXL2SYNPROSTNGRM7EGFEM1PLINC02614TFP1
    4号5LDB2ADH7AC004053.1AC093772.1LINC02511
    5号19WDR70CDH9CDH18FBXL17MTMR12ADAMTS12ICE1EDIL3ESM1GUSBP1AC091862.1NR2F1-AS1AC106799.2AC112206.2LINC02112AC010451.1LINC01950LINC01847AC104109.4
    6号9MCM9KHDRBS2SLC22A2MTO1AL590867.1LINC00240AL354892.1AL138830.2OR5V1
    7号14THSD7ALAMB4SNX8CHCHD3DPP6ELMO1GRM8ABCA13STK31EPHB4XRCC2SSPOAC004917.1AC073878.1
    8号4PABPC1ARHGAP39RPL8C8orf89
    9号10DNM1GOLM1TSTD2RGS3GNA14BNC2TUBB4BEEF1A1P5VPS13ASLC25A25-AS1
    10号7SH2D4BCTNNA3AC022387.1AL157834.1RPL13AP5C10orf143NSUN6
    11号12MYBPC3INTS4DLG2NELL1TMEM135PLEKHA7MMP26PRDM10DCDC1AP000893.2AC090458.1DISC1FP1
    12号18CHFRACACBTESCSLC8B1NT5DC3NME2P1RNFT2KLRG1RPL14P1RITA1DDX23AC024940.1NELL2CFAP54TEAD4LRCOL1AC124947.1AC090115.1
    13号2MTUS2AL354809.1
    14号5SCFD1CHD8GPHNLINC02291AL161757.4
    15号5UNC13CCASC4PPIP5K1DNAAF4AGBL1
    16号5ITGALKIAA0556EARS2ATF7IP2GAN
    17号12RAI1WBP2TAOK1STX8RAB37ACTG1P4HBZNF286AKIAA0753RPL13P12LINC02086AC139530.2
    18号1GREB1L
    19号4CACNG7EEF2BSGCAPN12
    20号6NINLSALL4PRPF6WFDC2KCNB1WFDC11
    21号4HUNKNCAM2TIAM1PPIAP22
    22号1ARHGAP8
    X13NEXMIFKIF4ATEX11MORF4L2IRS4MSNZNF711AC107419.1XISTPTCHD1-ASTSIXMIR325HGAL807742.1
    下载: 导出CSV
  • [1]

    LIU D, ZHAO Y, QI Y, et al. Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice[J]. J Neuroinflammation, 2020, 17(1): 258. doi: 10.1186/s12974-020-01925-y

    [2]

    WEI S J, CHANG R L, WONG C Q, et al. Dose-dependent differences in the profile of mutations induced by an ultimate carcinogen from benzo[a]pyrene[J]. Proc Natl Acad Sci U S A, 1991, 88(24): 11227-11230. doi: 10.1073/pnas.88.24.11227

    [3]

    MOOLENAAR-WIRSIY P J, WIRSIY Y G, URSO P. Presence of CD4+ SP and DP (γδ, αβ) T-cells expressing BPDE-DNA adducts in progeny of mouse dams exposed to Benzo(α) pyrene at mid-gestation[J]. J Immunotoxicol, 2007, 4(4): 267-277. doi: 10.1080/15476910701680053

    [4]

    GENNARO L A, VADHANAM M, GUPTA R C, et al. Selective digestion and novel cleanup techniques for detection of benzo[a]pyrene diol epoxide-DNA adducts by capillary electrophoresis/mass spectrometry[J]. Rapid Commun Mass Spectrom, 2004, 18(14): 1541-1547. doi: 10.1002/rcm.1516

    [5]

    GUO L, JIANG X, TIAN H Y, et al. Detection of BPDE-DNA adducts in human umbilical cord blood by LC-MS/MS analysis[J]. J Food Drug Anal, 2019, 27(2): 518-525. doi: 10.1016/j.jfda.2019.03.001

    [6]

    AKERMAN G S, ROSENZWEIG B A, DOMON O E, et al. Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells[J]. Mutat Res, 2004, 549(1/2): 43-64.

    [7]

    BELITSKAYA-LEVY I, HAJJOU M, SU W C, et al. Gene profiling of normal human bronchial epithelial cells in response to asbestos and benzo(a)pyrene diol epoxide (BPDE)[J]. J Environ Pathol Toxicol Oncol, 2007, 26(4): 281-294. doi: 10.1615/JEnvironPatholToxicolOncol.v26.i4.50

    [8]

    PIBERGER A L, KRÜGER C T, STRAUCH B M, et al. BPDE-induced genotoxicity: relationship between DNA adducts, mutagenicity in the in vitro PIG-A assay, and the transcriptional response to DNA damage in TK6 cells[J]. Arch Toxicol, 2018, 92(1): 541-551. doi: 10.1007/s00204-017-2003-0

    [9]

    DAI M, HUANG W, HUANG X, et al. BPDE, the migration and invasion of human trophoblast cells, and occurrence of miscarriage in humans: roles of a novel lncRNA-HZ09[J]. Environ Health Perspect, 2023, 131(1): 017009. doi: 10.1289/EHP10477

    [10]

    BUKOWSKA B, MOKRA K, MICHAŁOWICZ J. Benzo[a]pyrene-environmental occurrence, human exposure, and mechanisms of toxicity[J]. Int J Mol Sci, 2022, 23(11): 6348. doi: 10.3390/ijms23116348

    [11]

    MADEEN E, SIDDENS L K, UESUGI S, et al. Toxicokinetics of benzo[a]pyrene in humans: extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing[J]. Toxicol Appl Pharmacol, 2019, 364: 97-105. doi: 10.1016/j.taap.2018.12.010

    [12]

    LI M, LIU J, ZHOU J, et al. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells[J]. Toxicol Lett, 2021, 351: 53-64. doi: 10.1016/j.toxlet.2021.08.010

    [13]

    POIRIER M C. Chemical-induced DNA damage and human cancer risk[J]. Nat Rev Cancer, 2004, 4(8): 630-637. doi: 10.1038/nrc1410

    [14]

    LEE B M, KWACK S J, KIM H S. Age-related changes in oxidative DNA damage and benzo(a)pyrene diolepoxide-I (BPDE-I)-DNA adduct levels in human stomach[J]. J Toxicol Environ Health A, 2005, 68(19): 1599-1610. doi: 10.1080/15287390500182818

    [15]

    KUANG H, DAI Y, DING X, et al. Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases[J]. Int J Environ Health Res, 2021, 31(7): 823-834. doi: 10.1080/09603123.2019.1690638

    [16]

    JIN Y, XU P, LIU X, et al. Cigarette smoking, BPDE-DNA adducts, and aberrant promoter methylations of tumor suppressor genes (TSGs) in NSCLC from Chinese population[J]. Cancer Invest, 2016, 34(4): 173-180. doi: 10.3109/07357907.2016.1156689

    [17]

    LIN W S, CHENG W C, HO P Y, et al. Regulation of xenobiotic-metabolizing enzymes by 5-demethylnobiletin and Nobiletin to mitigate Benzo[a]pyrene-induced DNA damage in vitro and in vivo[J]. J Agric Food Chem, 2023, 71(40): 14604-14614. doi: 10.1021/acs.jafc.3c03347

    [18]

    ZHAO B, WANG J, GEACINTOV N E, et al. Polη, Polζ and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells[J]. Nucleic Acids Res, 2006, 34(2): 417-425. doi: 10.1093/nar/gkj446

    [19]

    JIANG Y, MINGARD C, HUBER S M, et al. Quantification and mapping of alkylation in the human genome reveal single nucleotide resolution precursors of mutational signatures[J]. ACS Cent Sci, 2023, 9(3): 362-372. doi: 10.1021/acscentsci.2c01100

    [20]

    ELLINGFORD J M, AHN J W, BAGNALL R D, et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome[J]. Genome Med, 2022, 14(1): 73. doi: 10.1186/s13073-022-01073-3

    [21]

    RHEINBAY E, NIELSEN M M, ABASCAL F, et al. Analyses of non-coding somatic drivers in 2, 658 cancer whole genomes[J]. Nature, 2020, 578(7793): 102-111. doi: 10.1038/s41586-020-1965-x

    [22]

    SAKTHIKUMAR S, ROY A, HASEEB L, et al. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes[J]. Genome Biol, 2020, 21(1): 127. doi: 10.1186/s13059-020-02035-x

    [23]

    SHAUL O. How introns enhance gene expression[J]. Int J Biochem Cell Biol, 2017, 91(Pt B): 145-155.

    [24]

    GUO Y, CAO Y, JARDIN B D, et al. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation[J]. Cardiovasc Res, 2023, 119(1): 221-235. doi: 10.1093/cvr/cvac077

    [25]

    JULES G E, PRATAP S, RAMESH A, et al. In utero exposure to benzo(a)pyrene predisposes offspring to cardiovascular dysfunction in later-life[J]. Toxicology, 2012, 295(1/3): 56-67.

    [26]

    ZOU H, ZHANG M, CHEN J, et al. AHR-mediated DNA damage contributes to BaP-induced cardiac malformations in zebrafish[J]. Sci Total Environ, 2024, 906: 167636. doi: 10.1016/j.scitotenv.2023.167636

    [27]

    KEANE S, DE WEERD H A, EJESKÄR K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma[J]. DNA Repair (Amst), 2022, 112: 103302. doi: 10.1016/j.dnarep.2022.103302

    [28]

    KEANE S, HERRING M, ROLNY P, et al. Inflammation suppresses DLG2 expression decreasing inflammasome formation[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2295-2311. doi: 10.1007/s00432-022-04029-7

    [29]

    KEANE S, AMÉEN S, LINDLÖF A, et al. Low DLG2 gene expression, a link between 11q-deleted and MYCN-amplified neuroblastoma, causes forced cell cycle progression, and predicts poor patient survival[J]. Cell Commun Signal, 2020, 18(1): 65. doi: 10.1186/s12964-020-00553-6

    [30]

    CHEN M, HUANG B, ZHU L, et al. Structural and functional overview of TEAD4 in cancer biology[J]. Onco Targets Ther, 2020, 13: 9865-9874. doi: 10.2147/OTT.S266649

    [31]

    ALEXANDROV K, CASCORBI I, ROJAS M, et al. CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: comparison with aromatic/hydrophobic adduct formation[J]. Carcinogenesis, 2002, 23(12): 1969-1977. doi: 10.1093/carcin/23.12.1969

    [32]

    TRETYAKOVA N, MATTER B, JONES R, et al. Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach[J]. Biochemistry, 2002, 41(30): 9535-9544. doi: 10.1021/bi025540i

    [33]

    ZHANG J, WANG H, YUAN C, et al. ITGAL as a prognostic biomarker correlated with immune infiltrates in gastric cancer[J]. Front Cell Dev Biol, 2022, 10: 808212. doi: 10.3389/fcell.2022.808212

    [34]

    LI R, WU X, XUE K, et al. ITGAL infers adverse prognosis and correlates with immunity in acute myeloid leukemia[J]. Cancer Cell Int, 2022, 22(1): 268. doi: 10.1186/s12935-022-02684-x

图(3)  /  表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  10
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-03-27
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回