Short-term changes of cardiopulmonary functions and psycho-emotional indicators of general population in urban forest environment in Beijing
-
摘要:背景
城市森林环境是城市环境的重要组成部分。短期森林环境暴露可给人体身心健康带来有益影响,但尚未见到针对森林环境暴露数小时内一般人群健康效应改变的研究,且城市市区和郊区的森林公园中大气污染物水平的差异是否会对人群健康效应产生影响仍不清楚。
目的探讨不同森林环境短期暴露对人群心肺功能及心理情绪相关指标的影响。
方法采用自身前后对照的研究设计,于2018年8-10月期间分别选取北京市城区和郊区两处森林公园为研究地点,以进入森林环境时长0.5~8 h的1 498名游客为研究对象,测量其进入森林公园前后2个时间点的血压、肺功能和心理情绪指标。以距离研究地点最近的2所监测站的空气污染物数据估计两处森林公园的空气质量水平。采用Mann-Whitney U秩和检验比较两地污染物浓度,配对
t 检验比较研究对象进入森林前后的健康水平,采用t 检验和多重线性回归方法分析研究对象进入森林环境前后健康指标改变和不同森林环境的关系。结果相比城区,郊区森林环境的空气污染物浓度更低(O3除外)。与进入森林环境前相比,研究对象离开森林时的收缩压(SBP)和舒张压(DBP)均下降(
t SBP=19.035,t DBP=6.283,P < 0.001),SBP从(132.96±20.27)mmHg降至(125.77±17.82)mmHg降幅大于DBP(78.57±10.79)mmHg降至(77.21±10.99)mmHg。城区和郊区两处森林公园相比,城区研究对象DBP降幅较大(Δ城区=-2.85 mmHg,Δ郊区=-1.13 mmHg,t =3.547,P < 0.001),但郊区森林公园对呼吸系统改善更明显,第1秒用力呼气容积(FEV1)水平升高(t =7.151,P < 0.001),城区则无差异(t =0.529,P =0.598)。多变量分析表明城郊差别并非是产生这一差异的决定性因素。对郊区研究结果进一步分析表明,研究对象肺活量指标FEV1平均升高0.09 L,第6秒用力呼气容积(FEV6)升高0.05 L,肺通气功能指标FEV1/FEV(从6 0.80±0.15升至0.82±0.14,t =4.290,P < 0.001)和中期呼气流速(FEF25%~75%)从(2.36±1.08)L·s-1升至(2.46±1.07)L·s-1,t =4.296,P < 0.001有所改善。心理情绪相关指标方面,紧张、愤怒、抑郁和慌乱4个分量表以及情绪状态总评分(TMD)较进入森林环境前下降,负向情绪得到明显改善。结论短期森林环境暴露能够明显改善人体心肺及心理健康,包括降低血压、提高肺功能和改善情绪。
Abstract:BackgroundUrban forest environment is an important part of urban environment. Short-term exposure to forest environment is beneficial to human physical and psychological health. However, currently there is no research focusing on the changes of health effects of general population after exposure to forest environment for a few hours. In addition, it's still unclear whether different air pollutant levels between urban and suburban forest parks will affect human health.
ObjectiveThis study aims to explore the effects of short-term exposure to different forest environments on human cardiopulmonary and psycho-emotional indicators.
MethodsFrom August to October in 2018, two forest parks, one in urban and the other in suburban areas, were selected as study sites, and a total of 1 498 visitors who stayed in the park area for 0.5-8 h were recruited as study subjects. Blood pressure, lung function, and psycho-emotional indicators were measured before and after forest environment exposure. Air pollutant data from two monitoring stations closest to the study sites were collected to estimate the air quality levels. Mann-Whitney
U test was used to compare the concentration of pollutants in the two parks, paired t test was used to compare the health indicators before and after forest exposure, and t-test and multiple linear regression were used to analyze the relationships between the changes of health indicators and different forest environments.ResultsThe concentrations of most air pollutants in suburban forest environment were lower than those in urban forest environment (except O3). Compared with the time point before entering forest environment, both systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the study subjects decreased significantly (
t SBP=19.035,t DBP=6.283,P < 0.001), and SBPdecreased from (132.96±20.27) mmHg to (125.77±17.82) mmHg showed a steeper decrease than DBPdecreased from (78.57±10.79) mmHg to (77.21±10.99) mmHg. When comparing between two forest environments, the visitors exposed to urban forest environment showed more decline in DBP than those exposed to suburban forest environment (Δurban=-2.85 mmHg, Δsuburban=-1.13 mmHg,t =3.547,P < 0.001), but the visitors exposed to suburban forest environment showed better improved respiratory system as the forced expiratory volume in the first second (FEV1) was elevated (t =7.151,P < 0.001), and there was no difference of the visitors in urban forest (t =0.529,P =0.598). The multivariate analysis results showed that regional factor was not decisive in producing this difference. Further analysis of the visitors exposed to suburban forest environment showed that their FEV1 and forced expiratory volume in the sixth second (FEV6) increased by 0.09 L and 0.05 L on average, respectively, and lung ventilation function indicators FEV1/FEV6 (increased from 0.80±0.15 to 0.82±0.14,t =4.290,P < 0.001) and forced expiratory flow at 25%-75%FEF25%-75%, increased from (2.36±1.08) L·s-1 to (2.46±1.07) L·s-1,t =4.296,P < 0.001 were both improved. In terms of psycho-emotional indicators, the scores of subscales of tension, anger, depression, and panic and the total score of total mood disturbance (TMD) decreased, showing that the negative emotions of the subjects were significantly reduced.ConclusionA short-term forest environment exposure can significantly improve the cardiovascular, respiratory, and psychological health of people, including lowering blood pressure, increasing lung capacity, and lifting mood.
-
Keywords:
- urban forest /
- cardiovascular effect /
- respiratory function /
- mood /
- air pollution
-
近年来,随着我国经济发展和城镇化进程的加快,城市大气污染物排放量急剧增长[1]。大量流行病学研究表明,大气污染物暴露严重危害人体健康[2],城市空气污染及其人群健康影响已成为最重要的环境与健康问题之一。
城市森林环境是城市环境的重要组成部分,与城市居民生理及心理健康息息相关。研究表明,短期的森林环境暴露可给人体免疫、呼吸、心血管系统和心理健康带来一定有益影响[3-4],且与生活在建筑物更多的环境中的人群相比,生活在高绿化程度环境中的居民心血管疾病死亡风险更低[5-6]。目前有关森林环境与健康的研究以实验性研究为主,受试者多为数十名健康人员或患某种特定疾病的人群,暴露时间常为1 d以上[7]。就实际情况而言,城市居民前往森林环境游玩的时长可能更短,但尚未见到针对森林环境暴露数小时内的一般人群健康效应改变的研究。即使同为森林环境,城市市区和郊区的森林公园中大气污染物水平也可能存在较大差异[3],这种差异是否会对人群健康效应产生影响仍不清楚。
为此,本研究选取北京市不同地区的两处森林公园为研究地点,以森林公园内游客为研究对象,探讨森林环境短期暴露对一般人群的心肺功能及心理相关指标的影响,并比较城区与郊区森林公园暴露后人群健康改变的差异,为客观评价森林环境对城市居民健康的公共卫生学意义,为促进城市森林资源的有效利用提供科学数据。
1. 材料与方法
1.1 研究时间、地点及人群
研究于2018年8—10月进行,研究地点为北京市两处森林公园,分别位于城区和郊区。郊区和城区森林公园面积分别约为29.33 km2和1.33 km2,林木绿化率分别约为96%和95%。
研究纳入愿意参加本研究且在森林公园中停留0.5~8 h的游客,排除长期生活在森林环境附近及活动受限者后,共1 498人。本研究已获北京大学伦理委员会批准(批准号:IRB00001052-18064),所有研究对象均已签署知情同意书。
1.2 大气污染资料
PM2.5、PM10、O3、SO2、NO2和CO数据来自北京市环境保护检测中心的空气质量实时发布系统。为增加污染物浓度监测值的代表性,选择距离研究地点直线距离最近的2所监测站(郊区和城区森林公园距离相应监测站距离分别约为3.73km和5.85km),由于研究对象进出森林时间均在6:00—18:00,以此12 h内污染物每小时平均浓度的算术平均值估算两公园大气污染物水平。
为了更准确地评估森林内部环境,研究在郊区森林公园内设置了环境监测点。采用多通道颗粒物采样仪(PC3016-IAQ,Graywolf,美国)测量PM2.5和PM10浓度,臭氧仪(Series500,Aeroqual,新西兰)测量O3浓度,空气负离子检测仪(COM-3200PRO Ⅱ,COM SYSTEM,日本)测量负离子浓度,温湿度仪(WSZY-1B,天健华仪科技发展有限公司,中国)测量温度和相对湿度。每日监测时间为8:30—16:30,仪器采样口高度约为1.5 m,接近人体呼吸带。
1.3 健康测量
在研究对象进入公园时使用问卷收集研究对象的性别、年龄、体重指数(body mass index,BMI)、生活习惯和疾病史等基本信息。在进入森林公园前后2个时间点进行健康测量,包括心血管系统检查、呼吸系统检查和心理问卷调查3个部分。
使用上臂式电子血压计(HEM-7051,Omron,中国)测量收缩压(systolic blood pressure,SBP)和舒张压(diastolic blood pressure,DBP)。以下情况被定义为患有心血管疾病:①自述患有高血压、冠心病等心血管系统疾病;②现场测量SBP ≥ 140 mmHg和(或)DBP ≥ 90 mmHg。采用肺量计(Model 2110,Vitalograph,英国)测量第1秒用力呼气容积(forced expiratory volume in the first second,FEV1)和最大呼气流量(peak expiratory flow,PEF)。
对于郊区森林公园研究人群,采用肺量计(Vitalograph 4000,Vitalograph,英国)测量FEV1、第6秒用力呼气容积(forced expiratory volume in the sixth second,FEV6)和中期呼气流速(forced expiratory flow 25%~75%,FEF25%~75%)。部分研究对象进行了心理问卷调查,选择信度和效度经过验证的《简明心境状态量表(profile of mood states,POMS)》中国常模[8]评估情绪状态,计算紧张、愤怒、疲劳、抑郁、精力、慌乱和自尊感7个分量表及情绪状态的总评分(total mood disturbance,TMD)。
1.4 统计学分析
使用SPSS 24.0和R 3.5.0软件进行统计分析。采用平均数±标准差(x±s),中位数(median,M)和四分位数(P25和P75)分别描述正态与非正态分布数据;采用Mann-Whitney U秩和检验比较两地污染物浓度;采用配对t检验比较进入森林前后健康水平;以进入森林环境前后健康指标的差值Δ为因变量(Δ某指标= X1离开森林时该指标数值-X0进入森林时该指标数值),使用t检验和多重线性回归方法分析Δ和森林公园所处地区的关系。检验水准α=0.01。
2. 结果
2.1 研究对象基本情况
研究对象基本信息见表 1。平均年龄为(51.66± 15.58)岁,男女比例为1:1.21。BMI为(24.01±3.30)kg·m-2。1 446名成年人中,超重及肥胖(BMI ≥ 24.0 kg·m-2)人数高达720人(49.79%)。两地相比,郊区森林公园研究对象患心血管系统疾病的比例高于城区(P=0.004),其他信息差异无统计学意义。此外,本研究纳入了停留时长在0.5~8h的研究对象,但实际停留时间数据的分布集中在1~3h之间(M:2.08 h,P25~P75:1.58~2.7 h,P10~P90:1.11~3.37 h),变异性较小,难以对时间段进行分层分析。
表 1 2018年8—10月北京郊区和城市森林公园研究人群基本信息项目 郊区森林公园(n=1302) 城区森林公园(n=196) 总人群(n=1498) χ2/t pb 人数 构成比a/% 人数 构成比a/% 人数 构成比a/% 性别(n=1487) 0.111 0.739 男 583 45.16 91 46.43 674 45.33 女 708 54.84 105 53.57 813 54.67 年龄/岁(x±s) (n=1457) 51.48±15.82 52.80±13.91 51.66±15.58 1.215 0.226 体重指数/kg.m-2 (x±s) (n=1487) 24.06±3.37 23.75±2.81 24.01±3.30 1.360 0.175 是否吸烟(n=1497) 0.366 0.545 是 216 16.59 29 4.87 245 16.37 否 1 086 83.41 166 85.13 1 252 83.63 是否喝酒(n=1396) 3.345 0.067 是 410 31.49 14 20.90 424 30.97 否 892 68.51 53 79.10 945 69.03 是否患有心血管系统疾病(n=1 035) 8.324 0.004 是 676 54.87 81 43.55 757 53.40 否 556 45.13 105 56.45 661 46.60 是否患有呼吸系统疾病(n=975) 0.471 0.493 是 13 1.54 1 0.77 14 1.44 否 832 98.46 129 99.23 961 98.56 [注] a:为有效百分比;b:使用卡方检验或独立样本 t 检验方法比较城区和郊区森林公园研究对象信息。 2.2 郊区与城区森林公园大气污染物水平及对研究对象健康影响的比较
2.2.1 郊区与城区大气污染物水平比较
研究期间,郊区和城区监测站大气污染物水平如表 2所示。两地O3质量浓度差异无统计学意义,城区的PM2.5、PM10、SO2、NO2和CO质量浓度均高于郊区(P < 0.001)。
表 2 2018年8—10月北京郊区与城区森林公园附近监测站污染物水平比较空气污染物 郊区森林公园 城区森林公园 p P25 M P75 P25 M P75 PM2.5/μg·m-3 9.75 18.00 52.75 22.00 59.00 102.00 < 0.001 PM10/μg·m-3 25.25 41.50 62.75 40.00 68.00 102.00 < 0.001 O3/μg·m-3 31.50 56.50 84.75 20.00 64.00 95.00 0.954 NO2/μg·m-3 21.25 27.00 40.00 23.00 49.00 72.00 < 0.001 SO2/μg·m-3 2.00 2.00 2.00 2.00 3.00 9.00 < 0.001 CO/μg·m-3 0.28 0.40 0.60 0.70 0.90 1.10 < 0.001 [注]采用两独立样本的Mann-Whitney U秩和检验。 2.2.2 研究对象进入郊区与城区森林公园前后心肺健康效应对比
如图 1所示,城郊两处森林公园研究对象进入森林前后,心血管指标的变化趋势一致,离开时SBP、DBP和脉压(pulse pressure,pp)均下降(P < 0.001),但变化幅度有差别,城区研究对象DBP降幅较大(Δ城区=-2.85mmHg,Δ郊区=-1.13mmHg,t=3.547,P < 0.001)。此外,郊区研究对象FEV1水平升高(t=7.151,P < 0.001),城区差异则无统计学意义(t=0.529,P=0.598)。
2.2.3 郊区与城区因素对人群心血管和呼吸指标影响的多变量分析
以研究对象进入森林环境前后4个健康指标SBP、DBP、pp和FEV1的变化量Δ为因变量,分析两处森林公园所处地区(0=郊区,1=城区)对其影响,并将自变量性别、年龄、BMI、是否吸烟、是否喝酒、是否患有心血管系统疾病、是否患有呼吸系统疾病、进入森林环境时间和进入森林环境时长引入多重线性回归模型中,以调整相应混杂因素。结果如图 2所示,各健康指标改变幅度在两地间差异均无统计学意义。
2.3 郊区森林环境对研究对象身心健康的短期影响
由于郊区森林公园污染物浓度与市区浓度差别较大,且游客数量较多,为了进一步降低研究异质性,增加研究结果的推广性,在此选取郊区森林公园的研究人群,详细分析其进入森林环境前后心肺与心理情绪相关指标的改变。
2.3.1 郊区森林公园空气污染物水平及气象条件
研究期间郊区森林公园内空气污染物水平和气象条件如表 3所示。森林环境内部测量PM2.5和PM10质量浓度分别达到73.90 μg·cm-3和212.19 μg·cm-3,O3质量浓度为92.14 μg·cm-3。此外,负离子浓度平均可达173.33 cm-3。
表 3 2018年8—10月北京郊区森林公园内空气污染物水平和气象条件项目 P25 M P75 空气污染物 PM2.5/μg·m-3 10.14 73.90 89.87 PM10/μg·m-3 75.17 212.19 263.81 O3 /μg·m-3 72.86 92.14 107.14 负离子/cm-3 68.67 173.33 266.93 气象因素 温度/℃ 12.20 15.00 18.70 相对湿度/% 24.70 32.55 40.88 2.3.2 研究对象心血管系统健康指标改变
与进入森林环境前相比,研究对象离开森林时SBP和DBP均下降,SBP下降幅度(平均降幅7.03 mmHg,t=16.686,P < 0.001)大于DBP(平均降幅1.13 mmHg,t=4.656,P < 0.001)。详见图 3。
2.3.3 研究对象呼吸系统健康指标改变
如图 4所示,进入森林后研究对象肺活量指标升高,FEV1平均升高0.09 L(t=7.151, P < 0.001),FEV6则升高0.05 L(t=4.279,P < 0.001)。FEV1/FEV6(t=4.290,P < 0.001)和FEF25%-75%(t=4.296,P < 0.001)也有所上升,肺通气功能有所改善。
2.3.4 研究对象心理健康指标改变
心理情绪方面,进入森林后研究对象紧张、愤怒、抑郁和慌乱4个分量表以及TMD总评分较进入森林环境前下降(t紧张 =4.432,t愤怒 =4.104,t抑郁 =3.462,t慌乱 =3.829,tTMD=3.844,均P < 0.001),负向情绪得到明显改善。同时,正向情绪精力评分升高(t精力 =2.777,P=0.006)。自尊感评分(t自尊感 = 1.694,P=0.093)和疲劳评分(t疲劳 =0.093,P=0.926)则差异无统计学意义。详见图 5。
3. 讨论
随着生活水平的提高,越来越多的城市居民选择利用空闲时间回归自然环境,探讨短期森林环境暴露对广大居民的心肺及心理健康的影响,比较城区和郊区森林环境暴露后健康水平的差异具有一定现实意义。
本研究结果显示,相比城区,郊区森林公园空气污染物浓度可能更低(除O3外),空气质量更优。一项英国的研究表明,在排除运动混杂因素后,大气NO2、PM2.5和超细颗粒物浓度的差别是造成市中心街和城市公园中的受试者呼吸系统改善程度差异的重要原因[9]。本研究中单因素分析也表明郊区公园对呼吸系统的改善更大,据此推测,郊区森林公园的低污染物水平可能是导致此差异的原因之一。虽然多变量分析结果显示城郊因素和FEV1不相关,但模型仅对研究对象基本信息进行调整,并未纳入大气污染物相关信息,有关森林环境中具体污染物暴露和研究对象健康改变的关联有待进一步探讨。
短期森林环境暴露能够明显改善人体心肺及心理健康,包括降低血压、提高肺功能和改善情绪。血压方面,研究对象的SBP、DBP和pp均下降。本研究纳入人群平均年龄较大,患高血压等心血管疾病的人群达50%以上;这与既往研究中森林环境暴露后健康成年人群血压未见明显改变[3, 10],老年人与高血压患者的血压明显降低[11-12]的结果相一致。应该明确的是,尽管本研究观察到了明显的血压降低,但其在临床上的实际意义仍有待商榷。呼吸系统方面,一项研究发现受试者在森林中行走1 h后肺活量增加,FEV1和FEV6分别提高了0.19 L和0.22 L[13]。本研究中FEV1和FEV6分别平均升高0.09 L和0.05 L,这种效应改变程度可能会受研究对象的个人特征、活动量、在森林中停留时间以及仪器使用熟练度等因素的影响,但从整体趋势上分析,森林环境暴露后研究对象肺功能有一定程度的改善。除了生理效应,森林之旅过后受试者负面情绪明显减少,情绪状态得到改善,这也与以往研究结果一致[14-15]。
本研究存在一些局限性。第一,与郊区森林公园相比,城区纳入研究人群数目较少,检验效度相对较低,且研究对象并非随机选择,可能存在一定选择偏倚;第二,本研究并未对研究对象的暴露时间及运动强度做强制要求,也未对每位研究对象在不同停留时间的健康指标进行追踪,难以对时间段进行分层分析,不同研究对象健康指标改变程度的差异可能与暴露时间或运动强度有关,该研究未能明确森林环境暴露与健康指标改变的时间效应关系;第三,本研究暴露评价采用监测站数据,不能准确代表研究对象的暴露水平,故未能建立针对森林环境中空气污染物水平与人群健康效应的准确模型。未来研究可对研究对象进行更准确的追踪测量,并对不同种类的空气污染物水平进行实时监测,以进一步探索森林环境暴露与人群健康效应之间的时间效应与暴露反应关系。
综上所述,城市森林环境暴露能够有效改善一般人群心肺功能及心理健康水平。城市居民可选择空气质量优良的天气前往森林公园中游玩。充分有效利用我国丰富的城市森林资源,既能提高居民生活质量,减少疾病经济负担,也有助于走出一条可持续发展的城市绿化道路。
-
表 1 2018年8—10月北京郊区和城市森林公园研究人群基本信息
项目 郊区森林公园(n=1302) 城区森林公园(n=196) 总人群(n=1498) χ2/t pb 人数 构成比a/% 人数 构成比a/% 人数 构成比a/% 性别(n=1487) 0.111 0.739 男 583 45.16 91 46.43 674 45.33 女 708 54.84 105 53.57 813 54.67 年龄/岁(x±s) (n=1457) 51.48±15.82 52.80±13.91 51.66±15.58 1.215 0.226 体重指数/kg.m-2 (x±s) (n=1487) 24.06±3.37 23.75±2.81 24.01±3.30 1.360 0.175 是否吸烟(n=1497) 0.366 0.545 是 216 16.59 29 4.87 245 16.37 否 1 086 83.41 166 85.13 1 252 83.63 是否喝酒(n=1396) 3.345 0.067 是 410 31.49 14 20.90 424 30.97 否 892 68.51 53 79.10 945 69.03 是否患有心血管系统疾病(n=1 035) 8.324 0.004 是 676 54.87 81 43.55 757 53.40 否 556 45.13 105 56.45 661 46.60 是否患有呼吸系统疾病(n=975) 0.471 0.493 是 13 1.54 1 0.77 14 1.44 否 832 98.46 129 99.23 961 98.56 [注] a:为有效百分比;b:使用卡方检验或独立样本 t 检验方法比较城区和郊区森林公园研究对象信息。 表 2 2018年8—10月北京郊区与城区森林公园附近监测站污染物水平比较
空气污染物 郊区森林公园 城区森林公园 p P25 M P75 P25 M P75 PM2.5/μg·m-3 9.75 18.00 52.75 22.00 59.00 102.00 < 0.001 PM10/μg·m-3 25.25 41.50 62.75 40.00 68.00 102.00 < 0.001 O3/μg·m-3 31.50 56.50 84.75 20.00 64.00 95.00 0.954 NO2/μg·m-3 21.25 27.00 40.00 23.00 49.00 72.00 < 0.001 SO2/μg·m-3 2.00 2.00 2.00 2.00 3.00 9.00 < 0.001 CO/μg·m-3 0.28 0.40 0.60 0.70 0.90 1.10 < 0.001 [注]采用两独立样本的Mann-Whitney U秩和检验。 表 3 2018年8—10月北京郊区森林公园内空气污染物水平和气象条件
项目 P25 M P75 空气污染物 PM2.5/μg·m-3 10.14 73.90 89.87 PM10/μg·m-3 75.17 212.19 263.81 O3 /μg·m-3 72.86 92.14 107.14 负离子/cm-3 68.67 173.33 266.93 气象因素 温度/℃ 12.20 15.00 18.70 相对湿度/% 24.70 32.55 40.88 -
[1] LOOMIS D, HUANG W, CHEN G. The International Agency for Research on Cancer(IARC) evaluation of the carcinogenicity of outdoor air pollution:focus on China[J]. Chin J Cancer, 2014, 33(4):189-196. http://cn.bing.com/academic/profile?id=41383e0103784d58b8747562d8742b41&encoded=0&v=paper_preview&mkt=zh-cn
[2] CHEN R, YIN P, MENG X, et al. Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities[J]. Am J Respir Crit Care Med, 2017, 196(1):73-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f36e4ec6c50b9d30b92a4e7dab17af96
[3] LANKI T, SIPONEN T, OJALA A, et al. Acute effects of visits to urban green environments on cardiovascular physiology in women:a field experiment[J]. Environ Res, 2017, 159:176-185. http://cn.bing.com/academic/profile?id=d8ed456fe5dcad3169b4886ee384f2b2&encoded=0&v=paper_preview&mkt=zh-cn
[4] LI Q, OTSUKA T, KOBAYASHI M, et al. Acute effects of walking in forest environments on cardiovascular and metabolic parameters[J]. Eur J Appl Physiol, 2011, 111(11):2845-2853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8adedebc28e5adc6ac79d4c77c60205b
[5] CROUSE D L, PINAULT L, BALRAM A, et al. Urban greenness and mortality in Canada's largest cities:a national cohort study[J]. Lancet Planet Health, 2017, 1(7):e289-e297. http://cn.bing.com/academic/profile?id=26521c4a6f191202b9d99e7b79584ce5&encoded=0&v=paper_preview&mkt=zh-cn
[6] JAMES P, HART J E, BANAY R F, et al. Exposure to greenness and mortality in a nationwide prospective cohort study of women[J]. Environ Health Perspect, 2016, 124(9):1344-1352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3304a30a055d56fcbd443d8ee001491
[7] OH B, LEE K J, ZASLAWSKI C, et al. Health and well-being benefits of spending time in forests:systematic review[J]. Environ Health Prev Med, 2017, 22(1):71. http://cn.bing.com/academic/profile?id=3a36122b218c001eb00624f238a3f017&encoded=0&v=paper_preview&mkt=zh-cn
[8] 祝蓓里. POMS量表及简式中国常模简介[J].天津体育学院学报, 1995, 10(1):35-37. http://www.cnki.com.cn/Article/CJFDTotal-TJTY501.007.htm [9] SINHARAY R, GONG J, BARRATT B, et al. Respiratory and cardiovascular responses to walking down a trafficpolluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls:a randomised, crossover study[J]. Lancet, 2018, 391(10118):339-349. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)32643-0/fulltext
[10] LEE J, PARK B J, TSUNETSUGU Y, et al. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects[J]. Public Health, 2011, 125(2):93-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8956b3023cbd55c8f8a8c842dcd7926
[11] YU C P, LIN C M, TSAI M J, et al. Effects of short forest bathing program on autonomic nervous system activity and mood states in middle-aged and elderly individuals[J]. Int J Environ Res Public Health, 2017, 14(8):897. http://cn.bing.com/academic/profile?id=dce8782dd8ef80bb1a75478b0accb35e&encoded=0&v=paper_preview&mkt=zh-cn
[12] MAO G X, CAO Y B, LAN X G, et al. Therapeutic effect of forest bathing on human hypertension in the elderly[J]. J Cardiol, 2012, 60(6):495-502. https://www.ncbi.nlm.nih.gov/pubmed/22948092
[13] LEE J Y, LEE D C. Cardiac and pulmonary benefits of forest walking versus city walking in elderly women:a randomised, controlled, open-label trial[J]. Eur J Integr Med, 2014, 6(1):5-11. http://cn.bing.com/academic/profile?id=af1ee39af7d15d52124d4099fa32a748&encoded=0&v=paper_preview&mkt=zh-cn
[14] JIA B B, YANG Z X, MAO G X, et al. Health effect of forest bathing trip on elderly patients with chronic obstructive pulmonary disease[J]. Biomed Environ Sci, 2016, 29(3):212-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201603007
[15] MAO G X, LAN X G, CAO Y B, et al. Effects of short-term forest bathing on human health in a broad-leaved evergreen forest in Zhejiang Province, China[J]. Biomed Environ Sci, 2012, 25(3):317-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201203010
-
期刊类型引用(9)
1. 杨光,王晓敏,罗忠运,覃丽. 钦州市空气颗粒污染物与抑郁症发作入院的关联性. 内科. 2024(03): 262-270 . 百度学术
2. 刘巧辉,王小平,刘晶岚. 森林公园游憩者旅游动机、满意度与健康效益感知关系. 西北大学学报(自然科学版). 2023(02): 220-228 . 百度学术
3. 邓芙蓉,李晨. 森林疗养与人群健康. 环境与职业医学. 2022(01): 1-3 . 本站查看
4. 李晨,刘珊,楚梦天,张文楼,南海龙,王雅铮,郭新彪,邓芙蓉. 短期森林疗养活动对年轻健康个体部分身心健康指标的影响. 环境与职业医学. 2022(01): 4-9 . 本站查看
5. 陈诺,龚梦柯,吴建平. 春、夏、秋三季不同森林环境的复愈性评估. 环境与职业医学. 2022(01): 10-16 . 本站查看
6. 谢宇虹,周心悦,严晶,吴雯冰,吴泽瑜,黄浩淼. 面向公共健康的公园要素感官偏好研究. 城市建筑. 2022(14): 174-178 . 百度学术
7. 张丽娜,陈仁杰,孟夏,阚海东. 绿地空间暴露与人群健康效应的研究进展. 环境与职业医学. 2021(02): 175-182 . 本站查看
8. 郭恒亮,王孟飞,龚喜云,魏海涛. 2016—2018年河南洛阳市主要大气污染物对心脑血管疾病门诊量的影响. 环境与职业医学. 2021(04): 389-396 . 本站查看
9. 张志永,叶兵,刘立军,高月,宋超. 森林疗养发展历程与特征分析及研究展望. 世界林业研究. 2020(04): 7-12 . 百度学术
其他类型引用(11)