基于非线性回归的峰度调整等效声级方法的调整项及调整系数

Adjustment terms and coefficients of nonlinear regression-based kurtosis-adjusted equivalent sound level method

  • 摘要:
    背景 噪声性听力损失(NIHL)是工作场所常见的职业损害,且非稳态噪声暴露尤为普遍。目前已有基于线性回归的峰度调整等效声级( L'_\textEX,\text8\text h )方法评估其对听力的损害,但因峰度作用复杂,仍需通过非线性回归引入新指标,以提高对非稳态噪声致听力损失的预测精度。
    目的 本研究旨在基于非线性回归探讨 L'_\textEX,\text8\text h 的调整项 \mathrmlg(\beta _N/\beta _G) 及调整系数λ,并评估该方法在评估非稳态噪声所致职业性听力损失中的有效性。
    方法 采用横断面研究设计,纳入1034名制造业工人,采集噪声暴露与听力损失指标。运用分位数回归分析量化测试频率为 3、4 和 6 kHz 的噪声性永久性听阈位移(NIPTS346)影响因素的贡献比例,通过多元线性回归及非线性最小二乘法计算 L'_\textEX,\text8\text h 。采用配对t检验分析峰度调整前后的预测效能,评估其对ISO 1999模型NIPTS₃₄₆预测值的影响;利用Chow检验比较非稳态噪声( L'_\textEX,\text8\text h )与稳态噪声( L_\textEX,\text8\text h )的高频听力损失(HFNIHL)发病率logistic回归曲线相似性,进而评估 L'_\textEX,\text8\text h 的有效性。
    结果 分位数回归结果显示峰度是评估非稳态噪声职业性听力损失风险的重要指标之一(贡献度为27.5%,P<0.05)。通过多元线性回归和非线性最小二乘法得到6个不同的调整系数λ与调整项\mathrmlg(\beta _N/\beta _G)的组合,将不同的 L'_\textEX,\text8\text h 代入ISO 1999预测方程,结果均显著改善对NIPTS的低估( L_\textEX,\text8\text h 低估值为14.2 dB HL, L'_\textEX,\text8\text h\text,n 低估值为11.5~5.6 dB HL,P<0.001),L'_\textEX,\text8\text h\text,6= L_\mathrmE\mathrmX,8\;\mathrmh+7.9\mathrmlg(\beta _N/10)的改善效果最佳(低估改善8.7 dB HL)。logistic曲线中,所有 L'_\textEX,\text8\text h 对应的非稳态噪声剂量-效应关系曲线均较 L_\textEX,\text8\text h 更贴近稳态噪声组,其中 L'_\textEX,\text8\text h\text,6 所对应的回归曲线最为接近稳态噪声组(差值为4.1%)。
    结论  L'_\textEX,\text8\text h 能有效地评估非稳态噪声暴露导致的职业性听力损失风险。采用非线性回归法计算调整项、调整系数所构建的 L'_\textEX,\text8\text h 在评估非稳态噪声暴露导致的职业性听力损失时比线性回归法更加有效。

     

    Abstract:
    Background Noise-induced hearing loss (NIHL) is a prevalent occupational health problem in workplace settings, with non-steady noise exposure being particularly widespread. Although kurtosis-adjusted equivalent sound level ( L'_\textEX,\text8\text h ) methods based on linear regression are available to assess hearing damage, the complexity of kurtosis effects necessitates introducing new metrics through nonlinear regression to improve predictive accuracy for hearing loss from non-steady noise exposure.
    Objective To examine the adjustment terms \mathrmlg(\beta _N/\beta _G) and coefficients (λ) of L'_\textEX,\text8\text h using nonlinear regression and evaluate the method’s effectiveness in assessing occupational hearing loss associated with non-steady noise exposure.
    Methods A cross-sectional study design was employed, enrolling 1034 manufacturing workers and evaluating noise exposure to estimate hearing loss metrics. Quantile regression analysis quantified the proportional contributions of influencing factors for noise-induced permanent threshold shift at 3, 4, and 6 kHz frequencies (NIPTS₃₄₆). L'_\textEX,\text8\text h was computed using multiple linear regression and nonlinear least squares optimization. Paired t-tests analyzed predictive efficacy before and after kurtosis adjustment to evaluate its impact on ISO 1999 NIPTS₃₄₆ predictions. Chow tests compared the similarity of logistic regression curves for high-frequency noise-induced hearing loss (HFNIHL) incidence between non-steady noise ( L'_\textEX,\text8\text h ) and steady noise ( L_\textEX,\text8\text h ), thereby validating the effectiveness of L'_\textEX,\text8\text h .
    Results The quantile regression analysis showed that kurtosis was a significant indicator of occupational hearing loss risk from non-steady noise (contribution rate was 27.5%, P<0.05). The linear regression and nonlinear least squares methods obtained six different combinations of coefficients (λ) and adjustment terms \mathrmlg(\beta _N/\beta _G) . Incorporating these L'_\textEX,\text8\text h adjustments into the ISO 1999 predictive model significantly reduced NIPTS underestimation (from 14.2 dB HL with L_\textEX,\text8\text h to 11.5–5.6 dB HL with L'_\textEX,\text8\text h , P < 0.001). The model L'_\textEX,\text8\text h\text,6=L_\mathrmE\mathrmX,8\;\mathrmh+7.9\mathrmlg(\beta _N/10) achieved the most significant improvement, reducing underestimation by 8.7 dB HL. The logistic curve analysis further demonstrated that all L'_\textEX,\text8\text h dose-response relationships for non-steady noise aligned more closely with the steady noise group than L_\textEX,\text8\text h , with L'_\textEX,\text8\text h\text,6 showing the smallest divergence (difference: 4.1%).
    Conclusions  L'_\textEX,\text8\text h demonstrates superior efficacy in assessing the risk of occupational hearing loss induced by non-steady noise exposure. The L'_\textEX,\text8\text h metric, constructed by calculating adjustment terms and coefficients through nonlinear regression analysis, exhibits greater effectiveness than linear regression methods in evaluating occupational hearing loss associated with non-steady noise exposure.

     

/

返回文章
返回