实验室模拟柴油机尾气颗粒物封闭空间内污染的时空特征及通风与气流的影响

Spatiotemporal characteristics of diesel exhaust particle pollution in confined space and impacts of ventilation and airflow: A laboratory simulation study

  • 摘要:
    背景 柴油机广泛应用于运输、农业、建筑及工业等多个领域,其排放的柴油机尾气已被列为Ⅰ类致癌物。柴油机尾气颗粒物(DEP)易进入呼吸道深部,是导致健康问题的主要因素。封闭环境中的DEP污染更为严重,因此需要研究有效的控制措施。
    目的 在实验室模拟条件下,探究DEP在封闭空间内扩散时其质量浓度和数量浓度的时空分布特征,揭示通风与额外施加气流对封闭空间内DEP污染水平的影响。
    方法 将柴油机放于实验室内(长3.39 m×宽2.85 m×高2.4 m),尾气排放端朝西,空气净化器安装于机体南侧,距柴油机1 m,使用便携式激光粒径谱仪实时监测8个测量点(距排放端水平距离1 m,高度1 m/1.5 m)的颗粒物浓度随柴油机运行时间的变化。探究柴油机功率(4.05 kW vs. 5.15 kW)、通风条件(新风空调最大流量600 m3·h−1)、额外气流强度(低档/高档)及方向(顺/逆尾气扩散方向)对封闭空间内DEP 污染水平的影响;比较5种不同型号柴油车运行时车内DEP污染水平的差异。
    结果 封闭空间内DEP质量浓度和数量浓度在启动柴油机后立即升高。以柴油机尾气排放端(坐标原点)为中心,距排放端水平距离1 m的测量点中,位于排放逆方向东侧坐标(−1,0) m的DEP质量浓度达峰时间(17.70 min)高于西侧坐标(1,0) m(16.20 min)、南侧坐标(0,−1) m(14.45 min)和北侧坐标(0,1) m(12.70 min)(P<0.05);其余各测量点(西、南、北)间达峰时间差异无统计学意义(P>0.05)。以柴油机尾气排放端(坐标原点)为中心,距排放端水平距离1 m的测量点中,位于排放端对侧北向坐标(0,1) m的DEP质量浓度与数量浓度峰值(174.62 μg·m−31319.85 p·cm−3)高于邻近空气净化器的南向坐标(0,−1) m(129.89 μg·m−31175.24 p·cm−3)及东向坐标(−1,0) m(140.12 μg·m−3、1120.53 p·cm−3)、西向坐标(1,0) m(147.60 μg·m−3、818.62 p·cm−3)的测量点(P<0.05),其余各点间差异无统计学意义(P>0.05);不同高度测量点DEP质量浓度和数量浓度峰值差异无统计学意义(P>0.05)。柴油机功率、通风、气流大小、气流方向均对DEP质量浓度和数量浓度达峰时间无影响(P>0.05);但5.15 kW功率柴油机的DEP质量浓度和数量浓度峰值(186.66±19.29) μg·m−3、(1382.79±122.56) p·cm−3高于4.05 kW功率柴油机(168.41±12.65) μg·m−3、(1284.45±71.30) p·cm−3P<0.05),不通风组的DEP质量浓度和数量浓度峰值(342.04±35.03) μg·m−3、(1 886.87±57.91) p·cm−3高于通风组(186.66±19.29)μg·m−3、(1 382.79±122.56) p·cm−3P<0.001)。额外施加低气流组(243.74 μg·m−31767.00 p·cm−3)和高气流组(218.14 μg·m−31583.04 p·cm−3)的DEP浓度峰值高于无额外施加气流组(184.95 μg·m−31331.5 p·cm−3)(P<0.05),但低、高气流组之间差异无统计学意义(P>0.05)。额外施加顺方向气流组的DEP质量浓度峰值(287.71 μg·m−3)高于额外施加逆方向气流组(243.74 μg·m−3)(t=−2.592,P=0.009),两组DEP数量浓度峰值差异无统计学意义(P>0.05)。5种不同型号柴油车运行时车内颗粒物的颗粒物质量浓度差异有统计学意义(Z=38.109,P<0.001)。
    结论 柴油机运行会排放大量颗粒物造成封闭空间内污染。功率大的柴油机排放的DEP污染水平更高。基于空间分布特征,建议将作业位置设置在尾气排放逆方向并邻近空气净化器,同时避免使用额外气流设备。

     

    Abstract:
    Background Diesel engines are widely used in transportation, agriculture, construction, industry, and other fields. Diesel exhaust, classified as a Group 1 carcinogen, emits particles (DEP) that can penetrate deep into the respiratory tract, posing significant health risks. DEP pollution is particularly severe in confined environments, necessitating effective control measures.
    Objective Under laboratory simulation conditions, to explore the spatiotemporal distribution characteristics of the mass and number concentrations of DEP as it diffuses indoors and to reveal the effects of ventilation and additional airflow on indoor DEP pollution levels.
    Methods A diesel engine was placed in a laboratory (length 3.39 m × width 2.85 m × height 2.4 m) with its exhaust emitted from east to west. An air purifier was installed 1 m south of the engine. Eight measurement points (1 m horizontal distance from the exhaust outlet, height: 1 m/1.5 m) were setup to monitor DEP concentrations using portable laser particle sizers. The effects of engine power (4.05 kW vs. 5.15 kW), ventilation (maximum airflow: 600 m3·h−1), additional airflow intensity (low and high), and direction (forward/reverse) on DEP pollution were analyzed. DEP levels of 5 diesel vehicle models were also compared.
    Results The mass and number concentrations of DEP indoors increased immediately after the diesel engine started. The peak mass concentration time at the eastern measurement point (−1, 0) m opposite to the exhaust direction (17.70 min) was significantly longer than that at the western (1, 0) m (16.20 min), southern (0, -1) m (14.45 min), and northern (0, 1) m (12.70 min) points (P<0.05), with no significant differences between the other points (western, southern, and northern) (P>0.05). The northern point (0, 1) m exhibited the highest DEP mass and number concentration peaks (174.62 μg·m−3, 1319.85 p·cm−3), significantly exceeding those at the southern (0, −1) m (129.89 μg·m−3, 1175.24 p·cm−3), eastern (−1, 0) m (140.12 μg·m−3, 1120.53 p·cm−3), and western (1, 0) m (147.60 μg·m−3, 818.62 p·cm−3) points (P<0.05), and no significant differences were observed among other points (P>0.05). There were no significant differences in peak DEP mass and number concentrations by measurement heights (P>0.05). Diesel engine power, ventilation, airflow intensity, and airflow direction had no significant effect on the time of peak DEP concentration (P>0.05). However, higher engine power (5.15 kW) produced greater DEP peaks (186.66±19.29) μg·m−3, (1382.79±122.56) p·cm−3 than the 4.05 kW engine power (168.41±12.65) μg·m−3, (1284.45±71.30) p·cm−3 (P<0.05). The peak mass concentration (342.04±35.03) μg·m−3 and number concentration (1886.87±57.91) p·cm−3 of DEP in the non-ventilated group were significantly higher than those in the ventilated group (186.66±19.29) μg·m−3, (1382.79±122.56) p·cm−3 (P<0.001). Forward airflow elevated DEP mass concentrations compared to reverse airflow (287.71 μg·m−3 vs. 243.74 μg·m−3, t=−2.592, P=0.009), but no effects on DEP number concentration (P>0.05). Significant differences in mass concentration were observed among selected 5 vehicle models (Z=38.109, P<0.001).
    Conclusion The operation of diesel engines will emit a large amount of particulate matter, causing pollution in enclosed spaces. Diesel engines with greater power have higher levels of DEP pollution emissions. Based on the spatiotemporal distribution characteristics, it is recommended to set the operation position in the reverse direction of exhaust emissions and close to air purifiers, while avoiding the use of additional air flow equipment.

     

/

返回文章
返回