我国食品全氟化合物的污染及人群膳食暴露风险评估研究进展

符文卓, 朱泽婷, 屠嘉欣, 韩广华, 田英, 张妍

符文卓, 朱泽婷, 屠嘉欣, 韩广华, 田英, 张妍. 我国食品全氟化合物的污染及人群膳食暴露风险评估研究进展[J]. 环境与职业医学, 2025, 42(1): 30-37. DOI: 10.11836/JEOM24427
引用本文: 符文卓, 朱泽婷, 屠嘉欣, 韩广华, 田英, 张妍. 我国食品全氟化合物的污染及人群膳食暴露风险评估研究进展[J]. 环境与职业医学, 2025, 42(1): 30-37. DOI: 10.11836/JEOM24427
FU Wenzhuo, ZHU Zeting, TU Jiaxin, HAN Guanghua, TIAN Ying, ZHANG Yan. Per- and polyfluoroalkyl substances in China: Food contamination and human dietary exposure risk assessment[J]. Journal of Environmental and Occupational Medicine, 2025, 42(1): 30-37. DOI: 10.11836/JEOM24427
Citation: FU Wenzhuo, ZHU Zeting, TU Jiaxin, HAN Guanghua, TIAN Ying, ZHANG Yan. Per- and polyfluoroalkyl substances in China: Food contamination and human dietary exposure risk assessment[J]. Journal of Environmental and Occupational Medicine, 2025, 42(1): 30-37. DOI: 10.11836/JEOM24427

我国食品全氟化合物的污染及人群膳食暴露风险评估研究进展

基金项目: 上海市加强公共卫生体系建设三年行动计划项目(2023—2025年)(GWVI-11.1-41);上海市卫生健康委2020年协同创新集群项目(2020CXJQ01)
详细信息
    作者简介:

    符文卓(2001—),男,本科生;E-mail:2020-yfyx-fwz@sjtu.edu.cn

    通讯作者:

    张妍,E-mail:yan_262@sjtu.edu.cn

  • 中图分类号: R15

Per- and polyfluoroalkyl substances in China: Food contamination and human dietary exposure risk assessment

Funds: This study was funded.
More Information
  • 摘要:

    全氟化合物(PFAS)是一类高度氟化的有机物,属于环境内分泌干扰物。人群普遍暴露于PFAS,而膳食是最主要的暴露来源。已有大量研究检测了我国多种食品中PFAS的污染水平,并在此基础上对人群进行了PFAS的膳食暴露风险评估。本文系统梳理既往国内相关研究,以反映该领域的研究现状,总结我国各类食品中PFAS的污染情况和人群PFAS膳食暴露水平,并对未来研究做出展望。现有研究主要关注了水产品、肉类、蛋类、奶类和植物性食物等食品中全氟烷基羧酸(PFCA)、全氟烷基磺酸(PFSA)和氯化多氟烷基醚磺酸(Cl-PFESA)三类PFAS的污染及相应的人群暴露风险。动物性食品中,水产品、蛋类和肉类污染较为严重,奶类的污染水平最低。不少研究发现氟化工业园(FIP)附近的植物性食品PFAS污染水平较高,但是非FIP地区植物性食物的PFAS污染水平远低于动物性食品。多项评估均表明FIP附近地区居民(相对于非FIP地区居民)的PFAS膳食暴露水平较高,儿童的暴露水平是成人的数倍,说明这两类人群具有更高的暴露倾向。研究通常采用危害商(HQ)或危害指数(HI)来量化人群膳食暴露风险,但由于不同研究纳入评估的食物种类和选取的健康指导值(HBGV)不尽相同,风险评估结果不具有可比性。参考2018年欧洲食品安全局制定的HBGV,我国部分地区(尤其是FIP附近地区)居民的PFAS膳食暴露水平存在健康风险。后续对于PFAS的膳食暴露风险评估可参考既往研究情况,合理选择纳入评估的食物和PFAS种类,同时应进一步加强评估的全面性和准确性,以为我国人群的PFAS暴露风险管控提供科学依据。

     

    Abstract:

    Per- and polyfluoroalkyl substances (PFAS) are a class of highly fluorinated organic compounds that belong to environmental endocrine disruptors. People are ubiquitously exposed to PFAS, with diet being the primary source of exposure. Numerous studies detected PFAS contamination in various foods in China, followed by dietary exposure risk assessment of PFAS in the population. This article systematically reviewed previous domestic research to reflect the current research status, summarize the contamination of PFAS in various types of food in China and the dietary exposure level of PFAS in the population, and put forward prospects for future research. Previous research mainly focused on the contamination of three types of PFAS, namely perfluoroalkyl carboxylic acid (PFCA), perfluoroalkyl sulfonic acid (PFSA), and chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA), in aquatic products, meat, eggs, dairy products, and plant-based foods, as well as the corresponding population exposure risks. Among animal origin foods, aquatic products, eggs, and meat were more severely contaminated, while dairy products were at the lowest level of contamination. Many studies reported high levels of PFAS contamination in plant origin foods near fluorochemical industrial parks (FIP) . However, the PFAS contamination level of plant origin foods in non-FIP areas was much lower than that of animal origin foods. Many studies demonstrated higher dietary exposure to PFAS in residents in proximity to FIP than that in non-FIP areas, and children's exposure was several times greater than that of adults, indicating a higher susceptibility to PFAS exposure in these two populations. The included studies typically used hazard quotient (HQ) or hazard index (HI) to quantify the risk of dietary exposure in populations, but the risk assessment results were not comparable due to differences in the types of food evaluated and the health-based guidance value (HBGV) selected across different studies. According to the HBGV established by the European Food Safety Authority in 2018, there are health risks associated with PFAS dietary exposure among residents in some regions of China, especially those near FIP. For subsequent dietary exposure risk assessments of PFAS, previous research can be referenced to make informed choices about the foods and PFAS types to be included in the assessment. Furthermore, it is crucial to enhance the comprehensiveness and accuracy of these assessments to provide a scientific basis for managing PFAS exposure risks among the Chinese population.

     

  • 全氟化合物(per- and polyfluoroalkyl substances, PFAS)是一类高度氟化的有机物,根据分子结构可分为全氟烷基酸(perfluoroalkyl acids, PFAA)、PFAA前体和聚合物三大类(见补充材料表S1),广泛应用于消防泡沫、不粘材料、纺织品等化工生产中[1]。由于PFAS不易降解,具有远距离迁移性和生物富集效应[23],现已在全球多种环境和生物介质中检出[45]。更重要的是,毒理学和流行病学研究表明PFAS可能对人体产生肝毒性、免疫毒性、神经毒性、生殖毒性和致癌作用等不良健康效应[610]。全氟辛酸(perfluorooctanoic acid, PFOA)及其盐类和全氟辛基磺酰氟,以及全氟辛烷磺酸(perfluorooctane sulfonic acid, PFOS)、全氟己烷磺酸(perfluorohexane sulfonic acid, PFHxS)和二者的盐类及相关化合物已相继被联合国环境规划署《关于持久性有机污染物的斯德哥尔摩公约》列为持久性有机污染物(persistent organic pollutants, POPs)[11],我国作为缔约方也出台了相应的限制政策,将上述物质列入《重点管控新污染物清单》[12];2023年11月,国际癌症研究机构分别将PFOA和PFOS列为1类和2B类致癌物[13]。随着PFOA、PFOS等传统长链PFAS的使用受到限制,全氟丁酸(perfluorobutanoic acid, PFBA)、全氟丁烷磺酸(perfluorobutane sulfonic acid, PFBS)等短链PFAS [骨架碳原子数<8的全氟烷基羧酸(perfluoroalkyl carboxylic acids, PFCA)和骨架碳原子数<6的全氟烷基磺酸(perfluoroalkyl sulfonic acids, PFSA)[14]]和以氯化多氟烷基醚磺酸(chlorinated polyfluoroalkyl ether sulfonic acid, Cl-PFESA)为代表的新型PFAS作为替代品被广泛应用[15],其不良健康效应近年来亦受到关注[1617]

    人体可通过多种途径暴露于环境中的PFAS,2017—2018年开展的国家人体生物监测项目显示我国10855名成人血清中有8种PFAS的检出率大于85%,其中PFOA的检出质量浓度(后称浓度)最高(5.15 ng·mL−1),其次是PFOS(4.26 ng·mL−1)和6:2 Cl-PFESA(1.63 ng·mL−1),说明我国人群PFAS暴露较为普遍[18]。膳食是人群最主要的PFAS暴露来源[19],我国2022年3月发布《生活饮用水卫生标准》,规定生活饮用水中PFOA和PFOS质量浓度的参考限值分别为80和40 ng·L−1[20],但尚未制定关于PFAS的食品限量。一些发达国家的有关机构制定了基于人体每日(周)摄入量的健康指导值(health-based guidance value, HBGV)(见补充材料表S2),且有较多的研究参考HBGV对我国人群膳食途径的PFAS暴露风险进行了评估(见补充材料表S3)。2021年,张恣意等[21]已对我国动物性食品和饮用水中全氟化合物的污染现状及膳食暴露评估进行了综述,但是近年来此类研究持续开展,且不少研究还关注了植物性食物。本文将介绍该领域的研究现状,重点从各类食品PFAS的污染检测和人群膳食暴露风险评估两方面梳理既往研究的主要结果,并结合既往研究对该领域提出建议,以期为后续研究提供参考。

    目前研究包括全国总膳食研究和地方性研究两类。全国总膳食研究(Total Diet Study, TDS)由国家食品安全风险评估中心组织实施,第四次TDS(后称TDS-4)首次将PFAS纳入检测项目,在国内12省开展[22]。TDS-5、TDS-6纳入的省份分别为20、24个,覆盖面进一步扩大[2324]。地方性研究的研究主体主要是高校、科研院所和地方疾病预防控制中心等机构。TDS将若干食物样本混合烹调后检测其中的PFAS[23],而地方性研究一般直接检测食物可食部分。动物性食物的PFAS污染受关注较多,但近年来植物性食物中的PFAS也逐渐受到重视,尤其是许多针对氟化工业园(fluorochemical industrial park, FIP)的研究重点关注了植物性食品。研究检测的PFAS单体主要是PFCA、PFSA和以Cl-PFESA为代表的新型PFAS三大类,少数研究关注了其他新型替代品和一些前体物质(见补充材料表S3)。

    既往研究主要对水产品、禽畜类(含内脏)、蛋类、乳类(含乳制品)、植物性食品等5大类食物的PFAS污染水平进行了检测(见补充材料表S4~表S8),下文分别择要进行介绍。

    在水产品中,长、短链PFAS均普遍检出,不同地区检出水平较高的PFAS单体存在差异(见补充材料表S4),新型PFAS替代品6:2 Cl-PFESA在一些研究中有较高的检出水平(0.14~0.279 ng·g−1[2426]。不同地区、不同种类的水产品PFAS检出情况存在较大差异,例如Jin等[26]检出北京市市售海产品中17种PFAS的总水平的均值由高到低依次为鱼(3.54 ng·g−1)、蟹(3.33 ng·g−1)、虾(2.94 ng·g−1)、软体动物(1.67 ng·g−1),而PFOS和6:2 Cl-PFESA 的平均水平由高到低均为虾(0.794和0.279 ng·g−1)、蟹(0.714和0.275 ng·g−1)、鱼(0.371和0.141 ng·g−1)、软体动物(0.135和0.032 ng·g−1),且二者水平呈正相关;Zhang等[27]的研究则表明海州湾水域蟹类7种主要检出的PFAS总水平平均值(504 ng·g−1,dw)(dw表示该水平是基于食物干燥状态的质量计算的,下同)远高于鱼、虾、软体动物类(15.7~24.8 ng·g−1,dw),PFOS的平均水平由高到低则依次为鱼(6.01 ng·g−1)、蟹(5.70 ng·g−1)、虾(3.92 ng·g−1)、软体动物(2.80 ng·g−1)。上述差异主要归因于水域间的PFAS污染差异及海产品对PFAS的蓄积能力不同。需注意,上述两项研究纳入检测的PFAS种类不尽相同,且分别用湿重和干重质量分数表示污染水平,干重水平在数值上高于其所对应的湿重水平,这也是造成研究结果存在差异的因素。水产品不同组织的PFAS污染水平也存在差异,例如有两项研究均对长江中下游地区生产的小龙虾进行了检测,一致发现小龙虾肝胰腺中的PFAS污染水平远高于肌肉组织[2829]。此外,FIP附近的水产品PFAS高于其他地区,如湖北某氟化工厂附近市售鱼类PFOS的水平(7.316 ng·g−1[30]是辽宁(0.344 ng·g−1[31]、胶州湾(0.85 ng·g−1[32]和长江中下游(0.272 ng·g−1[28]等地水产品中PFOS水平的数十倍。

    禽畜类长、短链PFAS的污染也较为普遍(见补充材料表S5)。多项研究发现禽畜类中PFBA的检出水平较高,如Wang等[33]对上海市售鸡、牛、羊肉的检测表明,三种肉类检出水平最高的PFAS均为PFBA(2.07~2.65 ng·g−1);张恣意等[30]在湖北某氟化工厂附近市售鸡、鸭、猪、牛等禽畜肉中检出水平最高的PFAS是PFOS(0.310 ng·g−1),其次是PFBA(0.236 ng·g−1);Gao等[34]检测了湖北某FIP附近鸡体内多种组织中的PFAS,发现各组织器官中检出水平最高的单体是PFBA(5.36~91.0 ng·g−1),其次是PFOS(1.86~10.9 ng·g−1)。此外值得注意的是,禽畜类内脏中PFAS的检出水平更高,例如Wang等[25]检出北京市售猪肝PFOA的水平(0.304 ng·g−1)高于猪肉(0.021 ng·g−1);Qi等[35]检出长、珠三角地区禽类肝脏17种PFAS总水平(6.725~6.992 ng·g−1)高于肌肉和皮下脂肪(2.211~2.929 ng·g−1),前述Gao等[34]的研究也表明鸡的血液、肠、心脏、肝脏等组织中PFAS检出水平相对较高。

    在蛋类中,近3次TDS发现PFOA、PFOS、全氟十三酸(perfluorotridecanoic acid, PFTrDA)等长链PFAS的检出水平较高[2324],但是一些地方性研究发现当地短链PFAS污染水平也较高(见补充材料表S6),如张恣意[30]等检出湖北某氟化工厂附近市售蛋类中PFBA(0.406 ng·g−1)的平均水平仅低于PFOS(3.495 ng·g−1),位列第二;Qi等[35]检出长、珠三角地区鸡蛋和鸭蛋中平均水平最高的单体为全氟庚酸(perfluoroheptanoic acid, PFHpA)(鸡蛋:1.41 ng·g−1;鸭蛋:0.58 ng·g−1)。此外,蛋黄中PFAS的污染水平远高于蛋清,如Wang等[36]发现湖北某FIP附近鸡蛋蛋黄中PFBA的检出水平(81.4 ng·g−1)高于蛋清(3.9 ng·g−1),Su等[37]发现山东某FIP附近家产鸡蛋蛋黄中12种PFAS总水平(8.99~482 ng·g−1)远高于蛋清(0.35~8.54 ng·g−1)。Su等[37]的研究还发现该FIP地区家产鸡蛋中12种PFAS的总检出水平(3.75~149 ng·g−1)远高于市售鸡蛋(0.83~5.16 ng·g−1),说明当地鸡蛋受环境PFAS的污染较重。

    近3次TDS均未在牛奶中检出PFAS[2324],但是部分地方性研究在乳类制品中检出了PFAS(见补充材料表S7),如曹民等[38]在北京市昌平区市售婴幼儿乳制品和成人乳制品(含奶粉、奶酪和酸奶)中检出PFOA、PFOS和全氟己酸(perfluorohexanoic acid, PFHxA)等3种PFAS,总水平分别为0.0353~0.2828 ng·g−10.0583~0.3068 ng·g−1。此外,文献[3942]报告乳类中的PFAS以PFOS为主,刘逸飞、方淑红等[4344]在乳类中主要检出PFOA,而张恣意、Yu等[3045]在乳类中主要检出其他若干种PFCA,但除了方淑红等[44]报道的成都市售牛奶PFAS水平(PFOA:0.377-3.87 ng·g−1)较高外,其余检出水平较均较低。总体上乳制品中PFAS的检出水平低于其他动物性食品,近几年的研究对其关注也较少。

    植物性食品的PFAS污染近年来受到重视,且有较多研究针对典型FIP地区开展(见补充材料表S8)。在非FIP地区,植物性食品中PFAS的污染水平通常较低,如TDS-6的研究结果显示,谷物、豆类、土豆、蔬菜、水果等植物性食物中各种PFAS单体的平均水平均未超过0.02 ng·g−1,远低于该研究中动物性食品的检出水平[24]。而在FIP附近地区,植物性食品PFAS的检出水平较高,且以短链PFAS为主,如Li等[46]发现江苏某FIP附近白瓜、白葫芦和秋葵中PFBA的检出水平(9.7、5.8、4.1 ng·g−1)较高,桃子中全氟戊烷磺酸(perfluoropentane sulfonic acid, PFPeS)的检出水平(5.3 ng·g−1)较高。山东小清河流域某FIP附近地区的植物性食物也受到了较多关注,Liu等[47]对距离该FIP不同距离处生产的谷类和蔬菜类作物中12种直链PFAS进行了检测,发现距离该FIP 0.3 km处生产的作物PFAS检出水平为58.8~8085 ng·g−1(dw),PFBA的检出水平最高,达40.5~2252.74 ng·g−1(dw),其次是PFOA(15.09~1879.76 ng·g−1,dw);而距离该FIP 10 km处生产的作物PFAS总检出水平为1.36~63.4 ng·g−1(dw),PFOA的检出水平最高(0.89~36.88 ng·g−1,dw),其次是PFBA(0.78~13.93 ng·g−1,dw)。Zhang等[48]对距离该FIP 约50 km以外区域生产的蔬菜进行了检测,发现12种PFAS的检出水平是1.67~33.5 ng·g−1(dw),PFBA的检出水平最高(0.98~17.86 ng·g−1,dw)。

    综上所述,3次TDS中PFAS污染水平最高的是水产品,其次是禽畜类和蛋类,乳类和植物性食品中PFAS的污染水平较低[2324];但地方性研究中不同食物的PFAS检出水平存在差异,例如某些地区(特别是FIP地区)蛋类、禽畜类和植物性食物的PFAS检出水平超过了很多研究中水产品的PFAS检出水平。食物的PFAS污染水平在一定程度上反映了食物对PFAS的蓄积能力,同时也受环境PFAS污染情况的影响,故不同地区食物的PFAS污染水平也存在较大的差异。尤其值得注意的是,FIP附近地区的食物中PFAS的污染水平较高。

    食物中PFAS污染浓度与人群每日(周)食物消费量的乘积与体重之比,可粗略表征人体PFAS的每日估计摄入量(estimated daily intake, EDI)或每周估计摄入量(estimated weekly intake, EWI)。国际机构已对PFOA、PFOS等典型单体制定HBGV,包括参考剂量(reference dose, RfD)、每日允许摄入量(tolerable daily intake, TDI)、每周允许摄入量(tolerable weekly intake, TWI)、最低风险水平(minimal risk level, MRL)等(见补充材料表S2)。现有研究多采用EDI(或EWI)与HBGV之比来量化健康风险,这一比值即危害商(hazard quotient, HQ)或危害指数(hazard index, HI),当HQ或HI>1时,认为人群存在健康风险。

    近3次TDS对PFAS的膳食暴露评估不断完善,采样地点从12省市扩展到24省市,检测的食物种类在动物性食物的基础上增加了植物性食物,TDS-6还关注了多种新型PFAS如6:2 Cl-PFESA的人群暴露风险[2324]。TDS-4中上海居民PFOS和PFOA的EDI [4.07、2.19 ng·(kg·d)−1],以及福建居民全氟十一酸(perfluoroundecanoic acid, PFUdA)和PFOS的EDI [1.486、1.01 ng·(kg·d)−1]均远高于全国(12省)平均水平 [PFOA:0.296 ng·(kg·d)−1;PFUdA:0.311 ng·(kg·d)−1;PFOS:0.651 ng·(kg·d)−1];TDS-5中上海居民PFUdA和PFOS的EDI [0.936、2.02 ng·(kg·d)−1],以及福建居民全氟壬酸(perfluorononanoic acid, PFNA)、PFUdA、PFOS、PFHxS的EDI [2.72、1.02、1.25、1.09 ng·(kg·d)−1]远高于全国(20省)平均水平[PFUdA:0.225 ng·(kg·d)−1;PFOS:0.443 ng·(kg·d)−1;PFNA:0.201 ng·(kg·d)−1;PFHxS:0.104 ng·(kg·d)−1][23]。TDS-6中上海、福建居民PFOA [3.52、1.90 ng·(kg·周)−1]和PFOS [5.23、2.32 ng·(kg·周)−1]的暴露水平较TDS-5有所下降,而北京、陕西居民PFOA [13.73、8.54 ng·(kg·周)−1],以及黑龙江、浙江、湖南居民PFOS [14.28、8.67、5.37 ng·(kg·周)−1]的暴露水平则远高于全国平均水平[PFOA:2.17 ng·(kg·周)−1;PFOS:2.72 ng·(kg·周)−1][24]。除了传统PFAS之外,TDS-6还评估了人群多种新型PFAS的膳食暴露水平,发现我国人群6:2 Cl-PFESA的EWI [2.75 ng·(kg·周)−1]高于PFOA和PFOS的EWI [PFOA:2.17 ng·(kg·周)−1;PFOS:2.72 ng·(kg·周)−1],且浙江、上海、湖南居民6:2 Cl-PFESA的EWI [分别为51.57、3.94、2.63 ng·(kg·周)−1]远高于其他地区[24]。与2018年欧洲食品安全局(European Food Safety Authority, EFSA)制定的HBGV [PFOA:6 ng·(kg·周)−1或0.8 ng·(kg·d)−1;PFOS:13 ng·(kg·周)−1或1.8 ng·(kg·d)−1][49]相比,3次TDS中我国居民PFOA和PFOS的平均暴露水平不存在健康风险,但TDS-4中的上海居民,TDS-5中的上海、福建居民,以及TDS-6中的北京、陕西、黑龙江居民PFOA和(或)PFOS的暴露水平存在健康风险。

    不同于TDS将多种动植物性食物纳入评估,地方性研究一般重点针对特定食物种类(如海产品、禽畜类、蔬菜等)开展暴露风险评估,仅有少数研究选取的食物种类较为全面(见补充材料表S3)。不同研究的结果差异较大,例如Wang等[25]报道北京居民通过市售蔬菜、鸡蛋、鸡肉、鸭肉、牛肉、猪肉、鱼肉等7种食物摄入PFOS和PFOA(含支链异构体)的量分别为0.157、0.08 ng·(kg·d)−1,远低于2018年EFSA制定的TWI[49],因而不存在健康风险;而方淑红等[44]的研究显示成都市居民通过当地市售大米、蔬菜、牛奶、鸡蛋、鱼和猪肉等6类食物摄入PFOS和PFOA的EDI分别是85.6、4.38 ng·(kg·d)−1,远高于上述北京居民,但是该研究参考2008年EFSA制定的TDI [PFOA:1500 ng·(kg·d)−1;PFOS:150 ng·(kg·d)−1][50],认为人群不存在健康风险。又如,Jin等[26]的研究表明北京居民摄入鱼、虾、蟹、软体动物4类海产品PFOS的EDI为0.167 ng·(kg·d)−1,参考2018年EFSA制定的TWI不存在健康风险(该研究未报道PFOA的EDI)[49];而Zhang等[27]评估了日照、连云港、盐城3市居民通过摄入上述4类海产品PFOS的暴露风险,参考2018年美国毒物和疾病登记署(Agency for Toxic Substances and Disease Registry, ATSDR)制定的MRL [PFOA:2 ng·(kg·d)−1;PFOS:3 ng·(kg·d)−1][51],得出居民PFOA和PFOS的HQ分别是1.96~3.82和1.42~3.39,存在健康风险。

    多项研究评估了FIP地区人群的PFAS暴露水平。Gao等[34]评估湖北某FIP附近居民通过食用采自距离FIP 1~2 km处3个采样点的鸡肉(含肌肉和内脏)和鸡蛋摄入PFOS、PFOA、PFNA、PFHxS等4种PFAS的EDI(合计)范围是2.45~8.52 ng·(kg·d)−1,高于2020年EFSA制定的TWI [PFOS、PFOA、PFNA、PFHxS合计:4.4 ng·(kg·周−1)][52],存在健康风险。不少研究评估了FIP地区人群通过植物性食品的PFAS膳食暴露风险,如Li等[46]评估江苏某FIP附近常熟、太仓市成年居民通过叶类蔬菜摄入PFOA的EDI为5.6~8.5 ng·(kg·d)−1,Liu等[47]评估山东某FIP附近居民通过食用种植于FIP附近0.3 km和10 km处的谷物和蔬菜两种食物摄入PFOA的EDI分别为171~305 ng·(kg·d)−1和3.39~5.14 ng·(kg·d)−1,林珺等[53]评估广东省居民食用某FIP周边种植的蔬菜摄入PFOS和PFOA的EDI分别是2.38、2.14 ng·(kg·d)−1,上述研究参考了2018年EFSA制定的TWI[49],2006年德国联邦风险评估研究所制定的TDI [PFOA:100 ng·(kg·d)−1][54]等HBGV,均发现人群存在健康风险。

    有研究评估了不同年龄人群的PFAS暴露水平,例Su等[37]评估山东省成人和儿童通过食用距离某FIP 2 km处的家产鸡蛋摄入PFOA的EDI分别是233和675 ng·(kg·d)−1,摄入PFOS的EDI是1.07和3.01 ng·(kg·d)−1,参考 2002年美国环境工作组(Environmental Working Group, EWG)制定的RfD [PFOA:333 ng·(kg·d)−1;PFOS:25 ng·(kg·d)−1][55],发现儿童存在健康风险;Zhang等[56]评估出儿童、青少年、成人通过食用猪肝摄入PFOA的EDI分别为0.800、0.324和0.211 ng·(kg·d)−1,摄入PFOS的EDI分别为1.985、0.805和0.522 ng·(kg·d)−1,儿童PFOA和PFOS的EDI接近或超过2018年EFSA和ATSDR的HBGV[4951],存在健康风险。上述研究中儿童的PFAS暴露水平均是成人的数倍,这主要是因为儿童处在生长发育阶段,食物消费量并不低而体重却远低于成人。

    PFAS在我国多种食品中均有检出,水产品、禽畜类(特别是内脏)、蛋类以及FIP地区的食品中PFAS的检出水平相对较高。FIP地区植物性食品的PFAS检出水平较高,可能是因为其较易吸收环境中高浓度的PFAS(尤其是短链PFAS),而随着环境中PFAS浓度的降低,植物吸收的PFAS相应减少,其PFAS污染水平则远低于对PFAS具有较强蓄积能力的动物性食物。就检测的PFAS单体而言,现有研究纳入检测的主要有PFCA、PFSA和Cl-PFESA三大类,并发现除了PFOA和PFOS等经典PFAS,PFBA、PFHxA、6:2 Cl-PFESA等短链和新型PFAS在食物中也具有较高的检出水平,但不同地区食物中检出水平较高PFAS单体存在差异(见补充材料表S3~S8),可能与各地环境中PFAS的污染特征不同有关。部分单体如PFOA和PFOS存在多个支链异构体,大多数研究并未提及,而少数研究检测了异构体[24253436]。目前国际机构仅对部分PFAS单体制定了HBGV,为此类物质的膳食暴露评估带来了挑战,特别是不同研究使用的HBGV不同且差异较大,会对风险评估带来更多不确定性。与2018年和2020年EFSA制定的TWI相比,我国部分地区(特别是FIP附近)人群的膳食PFAS暴露水平存在健康风险,需要引起重视。值得一提的是,2023年我国学者基于国内有关流行病学研究,推导出了针对我国人群的HBGV [PFOA:1.56 ng·(kg·d)−1;PFOS:1.52 ng·(kg·d)−1][57]。从监管的角度来看,食品限量较HBGV更加实用,欧盟曾于2022年12月根据欧盟植物、动物、食物及饲料常务委员会(Standing Committee on Plants, Animals, Food and Feed)的意见出台法规,对多种动物性食物中的PFOS、PFOA、PFNA、PFHxS制定了最大容许浓度(maximum levels, MLs),但该法规随后于2023年5月24日被废止[58]。由此来看,目前对食品中PFAS的污染治理仍然任重道远,需要更多高质量的健康风险评估工作。膳食暴露属于外暴露,而基于血清等人体生物样本检测的内暴露水平则可更加客观地反映人群的实际暴露水平,但后者的缺点是取样困难,也无法反映暴露来源。近期一项研究评估了挪威人群通过饮食和使用化妆品的PFAS外暴露水平,并使用生理药代动力学模型(physiologically based pharmacokinetic model, PBPK)估算了两种暴露途径对应的血清内暴露水平[59],可供今后研究参考。

    TDS-6发现蛋类和肉类是我国人群PFOA的主要膳食来源,水产品和肉类是我国人群PFOS的主要膳食来源[23]。2020年EFSA的研究表明水产品是欧洲人PFOA和PFOS的主要膳食来源,其次是蛋类和肉类[52]。但是,韩国一项研究根据其对洛东江三角洲地区农作物的评估和既往研究对韩国多种其他食物(含自来水、饮料、乳类、水产品、肉类等)的评估结果,推测当地居民膳食摄入的PFOA可能有接近70%来自植物性食物[60]。我国FIP附近的研究也显示,该类地区植物性食品的PFAS污染严重,并可造成人群健康风险。因此,不同地区居民PFAS的膳食暴露来源可能存在差异,需要结合当地实际情况进行分析。此外,多项研究还发现儿童的PFAS暴露水平高于成人。除了食物的PFAS污染水平外,研究纳入的食物种类,研究人群对特定食物的平均摄入量等也是造成不同群体暴露评估结果存在差异的重要因素。但是,既往较多的地方性研究仅考虑了人群通过摄入特定种类食品的PFAS暴露风险,对各类食物综合评估的研究较少。另外,许多研究不甚注重对所评估人群膳食摄入量的调查,多参考已发表文献或膳食指南中的推荐值,未必能反映人群的真实情况。近期一项研究基于TDS-6中的食品污染数据和膳食调查资料,采用蒙特卡洛模拟,发现上海市某社区老年人摄入多种动、植物性食物的PFAS暴露风险较高,并识别出PFAS暴露的主要食物来源[61],体现了暴露参数在风险评估中的重要性。除了传统的动、植物性食品,一些国内外研究还对冰淇淋、方便面、茶饮等新型食品和食品接触材料进行了膳食PFAS暴露风险评估,并发现了潜在的人群健康风险[6264],值得今后研究关注。

    综上所述,今后对于PFAS的膳食暴露风险评估需要同时关注传统和新型PFAS,并尽可能全面地考虑有代表性的食物种类。此外,宜进一步加强对被评估人群膳食摄入量和体重等暴露参数的调查,并通过适当优化评估模型(如采用概率模型)来提高膳食暴露风险评估的客观性。需要强调的是,FIP等氟污染源附近地区的人群暴露风险往往较高,应受到重点关注。期待后续研究加强膳食暴露风险评估的全面性、准确性和针对性,识别PFAS暴露水平较高的人群及其膳食暴露来源,并通过及时的风险交流促使相关政府部门及利益相关方采取措施,为降低人群因暴露于PFAS产生的健康风险做出实质性贡献。

  • [1]

    WANG Z, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environ Sci Technol, 2017, 51(5): 2508-2518. doi: 10.1021/acs.est.6b04806

    [2]

    MIRANDA D A, BENSKIN J P, AWAD R, et al. Bioaccumulation of Per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web[J]. Sci Total Environ, 2021, 754: 142146. doi: 10.1016/j.scitotenv.2020.142146

    [3]

    BRUNN H, ARNOLD G, KÖRNER W, et al. PFAS: forever chemicals-persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites[J]. Environ Sci Eur, 2023, 35(1): 20. doi: 10.1186/s12302-023-00721-8

    [4]

    EVICH M G, DAVIS M J B, MCCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): eabg9065. doi: 10.1126/science.abg9065

    [5]

    HAN F, WANG Y, LI J, et al. Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: results of the third National Human Milk Survey (2017-2020)[J]. J Hazard Mater, 2023, 443: 130163. doi: 10.1016/j.jhazmat.2022.130163

    [6]

    YANG W, LING X, HE S, et al. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: an integrated approach[J]. Environ Int, 2023, 178: 108138. doi: 10.1016/j.envint.2023.108138

    [7] 陈敏燕, 汪子夏, 田英, 等. 全氟化合物免疫毒性研究进展[J]. 环境与职业医学, 2022, 39(2): 223-228,235.

    CHEN M Y, WANG Z X, TIAN Y, et al. Advances on immunotoxicities induced by per- and polyfluoroalkylated substances[J]. J Environ Occup Med, 2022, 39(2): 223-228,235.

    [8]

    ZHOU Y, LI Q, WANG P, et al. Associations of prenatal PFAS exposure and early childhood neurodevelopment: evidence from the shanghai maternal-child pairs cohort[J]. Environ Int, 2023, 173: 107850. doi: 10.1016/j.envint.2023.107850

    [9]

    RICKARD B P, RIZVI I, FENTON S E. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease[J]. Toxicology, 2022, 465: 153031. doi: 10.1016/j.tox.2021.153031

    [10]

    SHEARER J J, CALLAHAN C L, CALAFAT A M, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma[J]. J Natl Cancer Inst, 2021, 113(5): 580-587. doi: 10.1093/jnci/djaa143

    [11]

    United Nations Environment Programme. Stockholm convention on persistent organic pollutants (POPs)[EB/OL]. [2024-01-26]. http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx.

    [12] 生态环境部. 重点管控新污染物清单(2023年版)[EB/OL]. [2024-10-30]. https://www.mee.gov.cn/gzk/gz/202212/t20221230_1009192.shtml.

    The Ministry of Ecology and Environment. Priority control list of new pollutants (2023 version)[EB/OL]. [2024-10-30]. https://www.mee.gov.cn/gzk/gz/202212/t20221230_1009192.shtml.

    [13]

    ZAHM S, BONDE J P, CHIU W A, et al. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid[J]. Lancet Oncol, 2024, 25(1): 16-17. doi: 10.1016/S1470-2045(23)00622-8

    [14]

    LI F, DUAN J, TIAN S, et al. Short-chain per- and polyfluoroalkyl substances in aquatic systems: occurrence, impacts and treatment[J]. Chem Eng J, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506

    [15] 宋博宇, 郑哲, 吕继涛, 等. 全氟和多氟烷基类化合物(PFASs)的环境转化与分类管控[J]. 环境科学研究, 2022, 35(9): 2047-2057.

    SONG B Y, ZHENG Z, LÜ J T, et al. Environmental transformation and classified management of per- and polyfluoroalkyl substances (PFASs)[J]. Res Environ Sci, 2022, 35(9): 2047-2057.

    [16]

    ESPARTERO L J L, YAMADA M, FORD J, et al. Health-related toxicity of emerging per- and polyfluoroalkyl substances: comparison to legacy PFOS and PFOA[J]. Environ Res, 2022, 212: 113431. doi: 10.1016/j.envres.2022.113431

    [17]

    MI X, WU L Y, LIU J J, et al. The effects of Cl-PFESAs exposure on blood lipids - a community-based large population study in Guangzhou[J]. Sci Total Environ, 2022, 806(Pt 2): 150634.

    [18]

    WU B, PAN Y, LI Z, et al. Serum per- and polyfluoroalkyl substances and abnormal lipid metabolism: a nationally representative cross-sectional study[J]. Environ Int, 2023, 172: 107779. doi: 10.1016/j.envint.2023.107779

    [19] 姚谦, 田英. 中国人群全氟化合物健康风险评估研究进展[J]. 上海交通大学学报(医学版), 2021, 41(6): 803-808.

    YAO Q, TIAN Y. Research progress in health risk assessment of perfluorinated compounds among Chinese population[J]. J Shanghai Jiao Tong Univ (Med Sci), 2021, 41(6): 803-808.

    [20] 国家市场监督管理总局. 生活饮用水卫生标准[EB/OL]. [2024-10-31]. https://std.samr.gov.cn/gb/search/gbDetailed?id=DAB6B92C0764FC96E05397BE0A0A5F84.

    State Administration for Market Regulation. Standards for drinking water quality[EB/OL]. [2024-10-31]. https://std.samr.gov.cn/gb/search/gbDetailed?id=DAB6B92C0764FC96E05397BE0A0A5F84.

    [21] 张恣意, 龚艳, 曹文成, 等. 我国主要食品中全氟烷基化合物的污染现状及膳食暴露评估研究进展[J]. 食品工业科技, 2021, 42(8): 410-416.

    ZHANG Z Y, GONG Y, CAO W C, et al. Research progress of concentrations and exposure assessment of perfluorinated alkyl substances in main food in China[J]. Sci Technol Food Ind, 2021, 42(8): 410-416.

    [22] 吴永宁. 中国总膳食研究三十年之演变[J]. 中国食品卫生杂志, 2019, 31(5): 403-406.

    WU Y N. The 30 years’ evolution of China Total Diet Study[J]. Chin J Food Hyg, 2019, 31(5): 403-406.

    [23]

    WANG Y, LIU J, LI J, et al. Dietary exposure of Chinese adults to perfluoroalkyl acids via animal-origin foods: Chinese Total Diet Study (2005-2007 and 2011-2013)[J]. J Agric Food Chem, 2019, 67(21): 6048-6055. doi: 10.1021/acs.jafc.9b01108

    [24]

    WANG Y, GAO X, LIU J, et al. Exposure to emerging and legacy polyfluoroalkyl substances in the sixth Total Diet Study — China, 2016-2019[J]. China CDC Wkly, 2022, 4(9): 168-171. doi: 10.46234/ccdcw2022.042

    [25]

    WANG X, WANG Y, LI J, et al. Occurrence and dietary intake of perfluoroalkyl substances in foods of the residents in Beijing, China[J]. Food Addit Contam Part B Surveill, 2021, 14(1): 1-11. doi: 10.1080/19393210.2020.1821098

    [26]

    JIN Q, SHI Y, CAI Y. Occurrence and risk of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in seafood from markets in Beijing, China[J]. Sci Total Environ, 2020, 726: 138538. doi: 10.1016/j.scitotenv.2020.138538

    [27]

    ZHANG A, WANG P, LU Y, et al. Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea, China[J]. Sci Total Environ, 2019, 665: 1026-1034. doi: 10.1016/j.scitotenv.2019.02.165

    [28]

    ZHOU M, ZHAO F, CHEN M, et al. Exposure and health risk assessment of per- and polyfluoroalkyl substances in crayfish from the middle and lower reaches of the Yangtze River[J]. J Agric Food Chem, 2023, 71(1): 825-835. doi: 10.1021/acs.jafc.2c06365

    [29]

    BIAN J, XU J, GUO Z, et al. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): implications for human exposure and health risk assessment[J]. Environ Pollut, 2024, 356: 124369. doi: 10.1016/j.envpol.2024.124369

    [30] 张恣意, 曹文成, 周妍, 等. 湖北某典型地区动物源食品中全氟及多氟烷基化合物的污染现状和膳食暴露评估[J]. 食品工业科技, 2021, 42(20): 214-222.

    ZHANG Z Y, CAO W C, ZHOU Y, et al. Pollution status and dietary exposure assessments of per- and polyfluoroalkyl substances in animal food from a typical area in Hubei Province[J]. Sci Technol Food Ind, 2021, 42(20): 214-222.

    [31] 张敏, 蔡丹, 陈小霞, 等. 辽宁省鱼类水产品中全氟化合物及其替代品的污染特征与健康风险评估[J]. 环境化学, 2024, 43(7): 2224-2235.

    ZHANG M, CAI D, CHEN X X, et al. Contamination characteristics and health risk assessment of poly-and perfluoroalkyl substances and alternatives in fish from Liaoning Province[J]. Environ Chem, 2024, 43(7): 2224-2235.

    [32]

    HAN T, GAO L, CHEN J, et al. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China[J]. Environ Pollut, 2020, 265: 115011. doi: 10.1016/j.envpol.2020.115011

    [33]

    WANG X, ZHANG Q, ZHAO Z, et al. A multi-plug filtration (m-PFC) cleanup method based on carboxylic multi-walled carbon nanotubes for the detection of 14 perfluorinated compounds and dietary risk assessment of chicken, beef, and mutton collected from Shanghai markets[J]. Food Control, 2021, 130: 108330. doi: 10.1016/j.foodcont.2021.108330

    [34]

    GAO Y, SONG B, HE A, et al. Isomer-specific perfluoroalkyl acids accumulation, excretion and maternal transfer to eggs in chickens around a fluorochemical manufactory in China[J]. Sci Total Environ, 2023, 865: 161125. doi: 10.1016/j.scitotenv.2022.161125

    [35]

    QI X, ZHOU J, WANG M, et al. Perfluorinated compounds in poultry products from the Yangtze River Delta and Pearl River Delta regions in China[J]. Sci Total Environ, 2019, 689: 1079-1086. doi: 10.1016/j.scitotenv.2019.06.258

    [36]

    WANG F, ZHAO C, GAO Y, et al. Protein-specific distribution patterns of perfluoroalkyl acids in egg yolk and albumen samples around a fluorochemical facility[J]. Sci Total Environ, 2019, 650(Pt 2): 2697-2704.

    [37]

    SU H, SHI Y, LU Y, et al. Home produced eggs: an important pathway of human exposure to perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) around a fluorochemical industrial park in China[J]. Environ Int, 2017, 101: 1-6. doi: 10.1016/j.envint.2017.01.016

    [38] 曹民, 邵俊娟, 高晓明, 等. 北京市昌平区市售乳制品及水果蔬菜中全氟化合物的含量及暴露评估[J]. 环境与健康杂志, 2018, 35(4): 337-339.

    CAO M, SHAO J J, GAO X M, et al. Perfluorochemicals in dairy products, vegetables and fruits in Changping distract of Beijing and exposure evaluation[J]. J Environ Health, 2018, 35(4): 337-339.

    [39] 余宇成. 牛奶中全氟烷基类物质的残留分析及污染水平调查[D]. 厦门: 集美大学, 2015.

    YU Y C. Investigation of residual levels and residue analysis on perfluoroalkyl substances in milk[D]. Xiamen: Jimei University, 2015.

    [40]

    LIU Y, ZHANG Q, LI Y, et al. Occurrence of per- and polyfluoroalkyl substances (PFASs) in raw milk and feed from nine Chinese provinces and human exposure risk assessment[J]. Chemosphere, 2022, 300: 134521. doi: 10.1016/j.chemosphere.2022.134521

    [41]

    XING Z, LU J, LIU Z, et al. Occurrence of perfluorooctanoic acid and perfluorooctane sulfonate in milk and yogurt and their risk assessment[J]. Int J Environ Res Public Health, 2016, 13(10): 1037. doi: 10.3390/ijerph13101037

    [42] 杨琳, 王梦, 李敬光, 等. 18份市售牛奶中全氟化合物及其前体物质含量分析[J]. 中华预防医学杂志, 2015, 49(6): 524-528.

    YANG L, WANG M, LI J G, et al. Analysis of perfluoroalkyl substances and their precursors in eighteen market milk[J]. Chin J Prev Med, 2015, 49(6): 524-528.

    [43] 刘逸飞, 李阳, 赵楠楠, 等. 北京市售动物源性食品中全氟化合物赋存及居民摄入风险评估[J]. 环境化学, 2021, 40(11): 3360-3367.

    LIU Y F, LI Y, ZHAO N N, et al. Occurrence of perfluoroalkyl substances in animal-derived food in Beijing and risk assessment of residents’ intake[J]. Environ Chem, 2021, 40(11): 3360-3367.

    [44] 方淑红, 彭光垣, 印红玲, 等. 成都饮食中全氟化合物的污染特征及健康风险评估[J]. 环境科学学报, 2019, 39(5): 1708-1716.

    FANG S H, PENG G Y, YIN H L, et al. Pollution characteristics and human health risk of perfluoroalkyl substance exposure through the diet in Chengdu city[J]. Acta Sci Circumstantiae, 2019, 39(5): 1708-1716.

    [45]

    YU Y, XU D, LU M, et al. QuEChERs combined with online interference trapping LC-MS/MS method for the simultaneous determination of 20 polyfluoroalkane substances in dietary milk[J]. J Agric Food Chem, 2015, 63(16): 4087-4095. doi: 10.1021/acs.jafc.5b00068

    [46]

    LI P, OYANG X, ZHAO Y, et al. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China[J]. Chemosphere, 2019, 225: 659-667. doi: 10.1016/j.chemosphere.2019.03.045

    [47]

    LIU Z, LU Y, SONG X, et al. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety[J]. Environ Int, 2019, 127: 671-684. doi: 10.1016/j.envint.2019.04.008

    [48]

    ZHANG M, WANG P, LU Y, et al. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China[J]. Environ Int, 2020, 135: 105347. doi: 10.1016/j.envint.2019.105347

    [49]

    EFSA Panel on Contaminants in the Food Chain (CONTAM), KNUTSEN H K, ALEXANDER J, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA J, 2018, 16(12): e05194.

    [50]

    European Food Safety Authority (EFSA). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain[J]. EFSA J, 2008, 6(7): 653.

    [51]

    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for perfluoroalkyls[EB/OL]. [2024-01-27]. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf.

    [52]

    EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), SCHRENK D, BIGNAMI M, et al. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. EFSA J, 2020, 18(9): e06223.

    [53] 林珺, 陈惠明, 包汇慧, 等. 广东省典型氟化工区周边蔬菜中3种全氟化合物及2种氯代多氟醚基磺酸的污染调查及膳食暴露评估[J]. 中国食品卫生杂志, 2022, 34(5): 982-989.

    LIN J, CHEN H M, BAO H H, et al. Investigation and dietary exposure risk assessments of 3 PFASs and 2 Cl-PFESA in fresh vegetables planted in the vicinity of typical fluorine chemical industry parks located in Guangdong province[J]. Chin J Food Hyg, 2022, 34(5): 982-989.

    [54]

    Drinking Water Commission (DWC). Provisional evaluation of PFT in drinking water with the guide substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as examples[EB/OL]. [2024-02-06]. https://www.umweltbundesamt.de/sites/default/files/medien/pdfs/pft-in-drinking-water.pdf.

    [55]

    THAYER K, HOULIHAN J. Perfluorinated chemicals: justification for inclusion of this chemical class in the national report on human exposure to environmental chemicals[R]. Washington, D. C. : Environmental Working Group, 2002.

    [56]

    ZHANG J, QIAO L, LI H, et al. Determination and risk assessment of perfluorinated alkylated substances (PFASs) in pork liver from the Chinese mainland[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2021, 38(3): 427-438. doi: 10.1080/19440049.2020.1856941

    [57]

    ZHANG Y T, BAO H, ZHANG L, et al. Health risk assessment of perfluorooctane sulfonate and perfluorooctanoic acid exposure in China based on epidemiological data[J]. Hyg Environ Health Adv, 2023, 7: 100066. doi: 10.1016/j.heha.2023.100066

    [58]

    European Union. Commission Regulation (EU) 2022/2388 of 7 December 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs (text with EEA relevance)[EB/OL]. [2023-11-03]. http://data.europa.eu/eli/reg/2022/2388/oj.

    [59]

    HUSØY T, CASPERSEN I H, THÉPAUT E, et al. Comparison of aggregated exposure to perfluorooctanoic acid (PFOA) from diet and personal care products with concentrations in blood using a PBPK model – results from the Norwegian biomonitoring study in EuroMix[J]. Environ Res, 2023, 239(Pt 2): 117341.

    [60]

    CHOI G H, LEE D Y, BRUCE-VANDERPUIJE P, et al. Environmental and dietary exposure of perfluorooctanoic acid and perfluorooctanesulfonic acid in the Nakdong River, Korea[J]. Environ Geochem Health, 2021, 43(1): 347-360. doi: 10.1007/s10653-020-00721-0

    [61] 李彤, 王宇, 吴限好, 等. 上海某社区老年人全氟和多氟烷基化合物摄食暴露风险评估[J]. 生态毒理学报, 2024, 19(4): 182-193.

    LI T, WANG Y, WU X H, et al. Risk assessment of ingestion exposure to per-and poly-fluoroalkyl substances among elderly people in a community in Shanghai[J]. Asian J Ecotoxicol, 2024, 19(4): 182-193.

    [62]

    HUANG Z, ZHANG X, WANG X, et al. Occurrence of perfluoroalkyl and polyfluoroalkyl substances in ice cream, instant noodles, and bubble tea[J]. J Agric Food Chem, 2022, 70(35): 10836-10846. doi: 10.1021/acs.jafc.2c01434

    [63]

    JALA A, ADYE D R, BORKAR R M. Occurrence and risk assessments of per- and polyfluoroalkyl substances in tea bags from India[J]. Food Control, 2023, 151: 109812. doi: 10.1016/j.foodcont.2023.109812

    [64]

    LERCH M, NGUYEN K H, GRANBY K. Is the use of paper food contact materials treated with per- and polyfluorinated alkyl substances safe for high-temperature applications? – Migration study in real food and food simulants[J]. Food Chem, 2022, 393: 133375. doi: 10.1016/j.foodchem.2022.133375

计量
  • 文章访问数:  425
  • HTML全文浏览量:  53
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-04
  • 录用日期:  2024-11-12
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回