Impacts of ambient air pollutants on childhood asthma from 2019 to 2023: An analysis based on asthma outpatient visits of Nanjing Children's Hospital
-
摘要:背景
哮喘严重影响着儿童的生长发育和心理健康,对儿童哮喘水平的控制和风险因素的评估逐渐为人们所重视。越来越多的研究发现大气污染物暴露能够明显增加儿童哮喘的发病风险。
目的了解南京市大气污染物浓度变化及南京市儿童医院哮喘门诊就诊情况,定量分析不同大气污染物暴露对儿童哮喘门诊就诊量的影响。
方法收集南京市2019年1月1日—2023年12月31日的逐日细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)浓度数据,气象数据(气温、气压和相对湿度)以及哮喘儿童门诊就诊资料,采用基于类泊松分布的广义相加模型定量分析大气污染物短期暴露对儿童哮喘门诊就诊量的影响。
结果2019—2023年南京市大气污染物PM2.5、PM10、SO2、NO2年平均浓度均未超过国家限值。单污染物模型分析显示PM2.5、PM10、NO2、CO均对儿童哮喘就诊量的单日滞后效应均在污染当天时最大,污染物浓度每升高10个单位,超额风险(ER)值分别为1.39%(95%CI:0.65%~2.14%)、1.46%(95%CI:0.97%~1.95%)、5.46%(95%CI:4.36%~6.57%)、0.18%(95%CI:0.11%~0.26%),SO2在lag1时达到最大效应,浓度每升高10个单位,ER值为23.15%(95%CI:13.57%~33.53%)。不同污染物最大累积滞后效应的时间不同,PM10、PM2.5、SO2、NO2、CO分别在lag01、lag01、lag02、lag02和lag03时的累积滞后效应最大,ER值分别为1.35%(95%CI:0.77%~1.92%)、0.96%(95%CI:0.10%~1.83%)、28.50%(95%CI:15.49%~42.98%)、6.92%(95%CI:5.53%~8.33%)和0.31%(95%CI:0.20%~0.42%)。PM2.5、PM10对儿童哮喘门诊量的影响随年龄的增大而增加,NO2、SO2和CO则呈现随年龄的增大而减小的现象。
结论大气污染物(PM2.5、PM10、SO2、NO2、CO)会增加儿童哮喘就诊量,且不同污染物对不同年龄段儿童哮喘就诊量的影响不同。
Abstract:BackgroundAsthma poses a serious threat to children's growth, development, and mental health, thus there has been an increasing focus on the control of asthma morbidity in children and the assessment of its risk factors. A growing body of research has found that exposure to ambient air pollutants an significatly increase the risk of childhood asthma.
ObjectiveTo understand the changes of ambient air pollutant concentrations in Nanjing and asthma outpatient visits to Nanjing Children's Hospital, and to quantitatively analyze the effects of exposure to different ambient air pollutants on children's asthma outpatient visits.
MethodsDaily data of ambient air pollutants fine particulate matter (PM2.5), inhalable particle (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), meteorological factors (air temperature & relative humidity), and outpatient visits due to asthma in the hospital from January 1, 2019 to December 31, 2023 were collected, and a generalized additive model based on quasi poisson distributions was used to quantitatively analyze the short-term effects of ambient air pollutant exposure on outpatient visits due to asthma in the hospital.
ResultsThe annual average concentrations of PM2.5, PM10, SO2, and NO2 in Nanjing from 2019 to 2023 did not exceed the national limits. For single-day lagged effects, the single-pollutant model showed that the effects of PM2.5, PM10, NO2, and CO on children's asthma outpatient visits were greatest for every 10 units increase at lag0, with excess risk (ER) of 1.39% (95%CI: 0.65%, 2.14%), 1.46% (95%CI: 0.97%, 1.95%), 5.46% (95%CI: 4.36%, 6.57%), and 0.18% (95%CI: 0.11%, 0.26%), respectively, and SO2 reached the maximum effect at lag1, with an ER of 23.15% (95%CI: 13.57%, 33.53%) for each 10 units increase in concentration. Different pollutants reached their maximum cumulative lag effects at different time. The PM10, PM2.5, SO2, NO2, and CO showed the largest cumulative lag effects at lag01, lag01, lag02, lag02, and lag03, respectively, with ERs of 1.35% (95%CI: 0.77%, 1.92%), 0.96% (95%CI: 0.10%, 1.83%), 28.50% (95%CI: 15.49%, 42.98%), 6.92% (95%CI: 5.53%, 8.33%), and 0.31% (95%CI: 0.20%, 0.42%), respectively. The influences of PM2.5 and PM10 on outpatient visits due to asthma in the hospital became more pronounced with advancing age, while the associations with NO₂, SO₂, and CO were weakened as children grew older.
ConclusionAmbient air pollutants (PM2.5, PM10, SO2, NO2, CO) can increase childhood asthma visits, and different pollutants have varied effects on the number of asthmatic children's visits at different ages.
-
Keywords:
- ambient air pollutant /
- child /
- asthma /
- outpatient visit /
- lag effect
-
-
图 2 2019—2023年南京市大气污染物浓度每升高10个单位 时各年龄段儿童哮喘的超额就诊风险[ER(95%CI),%]
A:PM2.5(μg·m−3),B:PM10(μg·m−3),C:NO2(μg·m−3),D:O3(μg·m−3),E:CO(mg·m−3),F:SO2(μg·m−3)。
Figure 2. The excess risk of per 10 units increase in ambient air pollutants on outpatient visits for children with asthma by age group in Nanjing from 2019 to 2023[ER (95%CI), %]
表 1 2019—2023年南京市大气污染物浓度、气象条件及儿童哮喘门诊量情况
Table 1 Ambient air pollutant concentrations, meteorological variables, and outpatient visits of children with asthma in Nanjing from 2019 to 2023
指标 Min P25 P50 P75 Max 超标天数/d 大气污染物 NO2/(μg·m−3) 5.64 19.89 27.91 39.89 109.00 0 SO2/(μg·m−3) 3.00 5.00 6.14 8.00 19.86 0 CO/(mg·m−3) 0.30 0.58 0.70 0.84 1.64 0 O3/(μg·m−3) 9.36 70.00 100.56 136.84 241.07 252 PM2.5/(μg·m−3) 4.00 18.14 27.00 39.57 140.79 0 PM10/(μg·m−3) 6.36 36.00 51.67 74.63 304.07 0 气象条件 气温/℃ −4.80 9.40 17.90 25.30 35.40 — 相对湿度/% 31.00 61.00 72.00 84.00 100.00 — 日均门诊量/人次 0 14.00 23.00 32.00 85.00 — [注] 根据GB 3095—2012《环境空气质量标准》中二级浓度限值要求,PM2.5、PM10、SO2和NO2年平均质量浓度(后简称为浓度)限值分别为35、70、60和40 μg·m−3,CO的24 h平均浓度限值为4 mg·m−3,O3的日最大8 h平均浓度限值为160 μg·m−3。 表 2 2019—2023年南京市大气污染物和气象因素相互之间的相关性(r)
Table 2 Correlations between ambient air pollutants and meteorological factors in Nanjing from 2019 to 2023 (r)
分类 PM10 PM2.5 NO2 O3 CO SO2 气温 相对湿度 PM10 1 PM2.5 0.900* 1 NO2 0.766* 0.716* 1 O3 0.001* −0.103* −0.187* 1 CO 0.544 0.623* 0.581* −0.016 1 SO2 0.549* 0.446* 0.551* 0.190* 0.580* 1 气温 −0.433* −0.492* −0.471* 0.649* −0.095* −0.083* 1 相对湿度 −0.420* −0.172* −0.259* −0.335* 0.098* −0.403* 0.139* 1 [注]*:P<0.05。 表 3 大气污染物对儿童哮喘门诊就诊量影响的双污染物及多污染物模型分析
Table 3 Dual- and multi-pollutant models of the impact of ambient air pollutants on outpatient visits of children with asthma
大气
污染物最佳
滞后双污染物模型 多污染物模型 +PM10 +PM2.5 +NO2 +O3 +CO +SO2 PM10 lag0 — 2.68 (1.71~3.66)* 0.06 (−0.53~0.69) 1.68 (1.17~2.19)* 1.12 (0.50~1.75)* 1.38 (0.85~1.92)* 2.49 (1.48~3.51)* lag01 — 1.23 (0.38~2.09)* −0.05 (−0.70~0.60) 1.45 (0.87~2.04)* 0.78 (0.12~1.47)* 1.18 (0.58~1.79)* 1.05 (0.19~1.91)* PM2.5 lag0 −2.10 (−3.51~−0.66)* — −1.35 (−2.26~−0.42)* 1.61 (0.83~2.39)* −0.003 (−1.08~1.08) 1.11 (0.31~1.92)* −4.30 (−5.93~−2.63)* lag01 −2.45 (−3.74~−1.14)* — −1.48 (−2.44~−0.50)* 1.10 (0.22~1.99)* −0.64 (−1.72~0.45) 0.64 (−0.26~1.54) −3.24 (−4.53~−1.93)* NO2 lag0 5.38 (4.03~6.74)* 6.67 (5.29~8.09)* — 5.57 (4.47~6.69)* 6.58 (5.09~8.10)* 6.54 (5.21~7.88)* 7.11 (5.45~8.79)* lag02 6.67 (5.02~8.34)* 8.21 (6.50~9.96)* — 6.98 (5.59~8.38)* 7.08 (5.44~8.75)* 7.10 (5.61~8.61)* 7.47 (5.68~9.29)* CO lag0 0.08 (−0.01~0.17) 0.19 (0.08~0.29)* −0.11 (−0.21~−0.01) 0.20 (0.13~0.28)* — 0.17 (0.09~0.26)* 0.04 (−0.08~0.17) lag03 0.19 (0.07~0.32)* 0.28 (0.15~0.40)* 0.10 (−0.02~0.22) 0.32 (0.21~0.43)* — 0.28 (0.17~0.40)* 0.17 (0.04~0.30)* SO2 lag1 17.51 (8.13~27.71)* 19.84 (10.19~30.33)* 11.01 (2.02~20.80)* 23.16 (13.59~33.54)* 17.78 (8.27~28.14)* — 13.15 (3.87~23.27)* lag02 18.37 (5.81~32.43)* 23.11 (9.97~37.82) 3.20 (−8.26~16.09) 28.89 (15.83~43.43) 18.23 (5.20~32.88) — 5.00 (−6.88~18.39) [注]*:P<0.05。 -
[1] 刘丹丹. 衡水市0-14岁儿童哮喘流行病学调查及相关因素分析[D]. 石家庄: 河北医科大学, 2023. LIU D D. Epidemiological investigation and related factors analysis of asthma in children aged 0-14 years in Hengshui city[D]. Shijiazhuang: Hebei Medical University, 2023.
[2] XU Q, ZHOU Q, CHEN J, et al. The incidence of asthma attributable to temperature variability: an ecological study based on 1990-2019 GBD data[J]. Sci Total Environ, 2023, 904: 166726. doi: 10.1016/j.scitotenv.2023.166726
[3] 伊娜, 刘婷婷, 周宇畅, 等. 1990—2019年中国儿童青少年哮喘疾病负担分析[J]. 中华流行病学杂志, 2023, 44(2): 235-242. YI N, LIU T T, ZHOU Y C, Disease burden of asthma among children and adolescents in China, 1990-2019[J]. Chin J Epidemiol, 2023, 44(2): 235-242.
[4] PEDERSEN M, LIU S, ZHANG J, et al. Early-life exposure to ambient air pollution from multiple sources and asthma incidence in children: a nationwide birth cohort studyfrom Denmark[J]. Environ Health Perspect, 2023, 131(5): 57003. doi: 10.1289/EHP11539
[5] PIERANGELI I, NIEUWENHUIJSEN M J, CIRACH M, et al. Health equity and burden of childhood asthma-related to air pollution in Barcelona[J]. Environ Res, 2020, 186: 109067. doi: 10.1016/j.envres.2019.109067
[6] Chen G, Zhou H, He G, et al. Effect of early-life exposure to PM2.5 on childhood asthma/wheezing: a birth cohort study. Pediatr Allergy Immunol. 2022;33(6): 10.1111/pai. 13822.
[7] WU C, ZHANG Y, WEI J, et al. Associations of early-life exposure to submicron particulate matter with childhood asthma and wheeze in China[J]. JAMA Netw Open, 2022, 5(10): e2236003. doi: 10.1001/jamanetworkopen.2022.36003
[8] 环境保护部, 国家质量监督检验检疫总局, 环境空气质量标准: GB3095-2012[S]. 北京: 中国标准出版社, 2012: 1-6. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. Ambient Air Quality Standards: GB3095-2012[S]. Beijing: Standards Press of China, 2012: 1-6.
[9] World Health Organization. WHO global air quality guidelines: Particulate matter (PM2.5 and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide[R]. Geneva: World Health Organization, 2021. https://www.who.int/publications/i/item/9789240034228.
[10] 张莉君, 许慧慧, 朱凤鸣, 等. 上海市儿童呼吸系统疾病空气质量健康指数的建立[J]. 环境与职业医学, 2022, 39(7): 730-736. ZHANG L J, XU H H, ZHU F M, et al. Construction of an air quality health index for pediatric respiratory diseases in Shanghai[J]. J Environ Occup Med, 2022, 39(7): 730-736.
[11] 胡翠玲, 徐婕, 沈国妹, 等. 上海市空气污染物与儿童呼吸系统疾病门诊量的时间序列研究[J]. 环境与职业医学, 2021, 38(1): 23-29. HU C L, XU J, SHEN G M, et al. Associations between air pollutants and daily hospital visits in children for respiratory disorders in Shanghai: a time-series study[J]. J Environ Occup Med, 2021, 38(1): 23-29.
[12] 梁子越, 陈凤格, 张莹, 等. 石家庄市大气NO2短期暴露对儿童神经系统门诊量影响的病例交叉研究[J]. 环境与职业医学, 2024, 41(3): 288-293. LIANG Z Y, CHEN F G, ZHANG Y, et al. A case-crossover study on association between short-term atmospheric NO2 exposure and outpatient visits due to pediatric neurological system conditions in Shijiazhuang[J]. J Environ Occup Med, 2024, 41(3): 288-293.
[13] 彭星宇, 王彦丁, 张新民, 等. 华中某市大气污染物O3、PM2.5暴露对居民死亡的时间序列研究[J]. 环境与职业医学, 2023, 40 (3): 331-341. PENG Xingyu1 , WANG Yanding , ZHANG Xinmin, et al. Associations of ambient PM2.5 and O3 with human mortality: A time-series study in a city of central China[J]. Journal of Environmental and Occupational Medicine, 2023, 40(3): 331-341.
[14] Carey MA, Card JW, Voltz JW, et al. It's all about sex: gender, lung development and lung disease. Trends Endocrinol Metab. 2007;18(8): 308-313.
[15] ZHANG P, ZEIN J. Novel insights on sex-related differences in asthma[J]. Curr Allergy Asthma Rep, 2019, 19(10): 44. doi: 10.1007/s11882-019-0878-y
[16] 雷洋. 不同性别、不同年龄阶段上气道大小的CBCT研究[D]. 山东大学, 2020. LEI L. CBCT Study of Upper Airway Dimensions in Different Age Groups and Genders[D]. Shandong University, 2020.
[17] LUBNER R J, RUBEL K, CHANDRA R K, et al. Particulate matter exposure is associated with increased inflammatory cytokines and eosinophils in chronic rhinosinusitis[J]. Allergy, 2024, 79(5): 1219-1229. doi: 10.1111/all.16006
[18] LIU K, HUA S, SONG L, et al. PM2.5 exposure and asthma development: the key role of oxidative stress[J]. Oxid Med Cell Longev, 2022, 2022: 3618806.
[19] CHEN S J, HUANG Y, YU F, et al. BMAL1/p53 mediating bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma[J]. Cell Commun Signal, 2023, 21(1): 39. doi: 10.1186/s12964-023-01057-9
[20] LIN A H, HSU C C, LIN Y S, et al. Mechanisms underlying the stimulatory effect of inhaled sulfur dioxide on vagal bronchopulmonary C-fibres[J]. J Physiol, 2020, 598(5): 1093-1108. doi: 10.1113/JP279152
[21] LI X, YI H. Sulfur dioxide-enhanced asthma susceptibility is involved with inhibition of bitter taste transduction in mouse lung[J]. Environ Toxicol Pharmacol, 2022, 95: 103938. doi: 10.1016/j.etap.2022.103938
[22] LU C, LIU Q, QIAO Z, et al. High humidity and NO2 co-exposure exacerbates allergic asthma by increasing oxidative stress, inflammatory and TRP protein expressions in lung tissue[J]. Environ Pollut, 2024, 353: 124127. doi: 10.1016/j.envpol.2024.124127
[23] FENG Y, YANG X, WANG Y, et al. The short-term association between environmental variables and daily pediatric asthma patient visits in Hangzhou, China: a time-series study[J]. Heliyon, 2024, 10(18): e37837. doi: 10.1016/j.heliyon.2024.e37837
[24] LIU Y, YOU J, DONG J, et al. Ambient carbon monoxide and relative risk of dailyhospital outpatient visits for respiratory diseases in Lanzhou, China[J]. Int J Biometeorol, 2023, 67(12): 1913-1925. doi: 10.1007/s00484-023-02550-z
[25] TIAN F, ZHONG X, YE Y, et al. Mutual associations of exposure to ambient air pollutants in the first 1000 days of life with asthma/wheezing in children: prospective cohort study in Guangzhou, China[J]. JMIR Public Health Surveill, 2024, 10: e52456. doi: 10.2196/52456
[26] ZHANG X, YUAN Z, WU J, et al. An orally-administered nanotherapeutics with carbon monoxide supplying for inflammatory bowel disease therapy by scavenging oxidative stress and restoring gut immune homeostasis[J]. ACS Nano, 2023, 17(21): 21116-21133. doi: 10.1021/acsnano.3c04819
[27] WIEGMAN C H, LI F, RYFFEL B, et al. Oxidative stress in ozone-induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease[J]. Front Immunol, 2020, 11: 1957. doi: 10.3389/fimmu.2020.01957
[28] ZHAO Y, KONG D, FU J, et al. Increased risk of hospital admission for asthma in children from short-term exposure to air pollution: case-crossover evidence from northern China[J]. Front Public Health, 2021, 9: 798746. doi: 10.3389/fpubh.2021.798746
[29] Chen Z, Zhang L, Ai T, et al. Air Pollution and Childhood Asthma Hospitalizations in Chengdu, China: A Time-Series Study. Journal of Asthma and Allergy. 2025;18: 229-243.
[30] Lloyd CM, Saglani S. Early-life respiratory infections and developmental immunity determine lifelong lung health. Nat Immunol. 2023;24(8): 1234-1243.
[31] Schramm W. The (human) respiratory rate at rest. Journal of Mathematical Biology . 2022;85(5): 60.
-
-
PDF格式
24364 作者贡献声明 149KB
-
-
-