Research progress on ultra-processed foods consumption and its association with health
-
摘要:
随着工业化和商业化水平的迅速提高,超加工食品(UPFs)的销售和人群摄入在全球不断增加。高UPFs摄入与多种健康问题相关。本文对多种健康结局进行简述,并从加工生产等角度探讨UPFs消费对健康影响的可能原因。综述发现,高UPFs摄入会增加成人超重/肥胖、2型糖尿病、癌症死亡和焦虑症等发生风险,导致孕妇子痫前期、妊娠期高血压、妊娠期糖尿病及儿童青少年超重/肥胖的发生风险升高,影响胚胎的发育速度及后代的语言发育等。UPFs导致健康危害的原因主要为以下几点:UPFs的便捷性和可及性的提高影响了人群的饮食结构;在生产加工中,UPFs中添加的精制碳水化合物和脂肪,其共同暴露会增加对食物的欲望和动机,导致更多能量的摄入;复杂的加工过程会导致膳食纤维和微量营养素的丢失,影响人体饱腹感、消化率、咀嚼持续时间等,同时产生呋喃、杂环胺、多环芳烃、丙烯醛等有毒化合物;更多种类和更高剂量的食品添加剂被引入,包装材料中的外源性污染物迁移至食品,均会引发潜在的健康和安全风险。目前我国对UPFs和健康关系的研究较少,基于UPFs已知的健康危害,我国需要进行更多的深入研究,以期更好地了解UPFs与健康之间的关系。
Abstract:With the rapid progress of industrialization and commercialization, the sales and population intake of ultra-processed foods (UPFs) are constantly increasing globally. High UPFs intake is associated with various health issues. This article provided a brief overview of various health outcomes and explored the possible causes for the health impacts of UPFs consumption from the perspectives of processing and production. The review found that high UPFs intake increased the risks of adult overweight/ obesity, type 2 diabetes, cancer mortality, and anxiety disorders; maternal preeclampsia, gestational hypertension, and gestational diabetes; childhood and adolescent overweight/ obesity. High UPFs intake also affected embryonic development and offspring language development. The possible explanations for the negative health outcomes associated with UPFs were as follows. The convenience and increased accessibility of UPFs affect the dietary structure of the population. The combined exposure to refined carbohydrates and fats added to UPFs increases the desire and motivation for more energy intake. The complex processing process leads to the loss of dietary fibers and micronutrients, affecting human satiety, digestion rate, chewing duration, and producing toxic compounds such as furan, heterocyclic amines, polycyclic aromatic hydrocarbons, and acrolein. The introduction of more types and higher doses of food additives and the migration of exogenous pollutants from packaging materials to food pose potential health and safety risks. At present, there is little research on the relationship between UPFs and human health in China. Based on the known health risks of UPFs, more in-depth research is needed in order to better understand the relationship between UPFs and human health.
-
随着现代科技进步和商业化发展,天然食物加工为高能量密度、高脂肪、高精制碳水的食品成为越来越普遍的现象。超加工食品(ultra-processed foods, UPFs)的普及与多种健康结局的关系也引起了学者和公众的关注,但有关超加工食品对健康影响的研究仍存在一些争议。本文将回顾UPFs的定义、营养特点、国内外消费现状,重点探讨超加工食品对人体多种健康结局的影响,并从加工生产角度探讨造成UPFs对人体健康影响的可能原因,以期更好地了解UPFs与健康之间的关系,为我国开展UPFs的相关研究提供思路。
1. UPFs的定义和营养特点
超加工食品是经过一系列复杂的工业加工制作(例如水解、氢化及预油炸等),并添加糖、油和盐以及一系列工业配料如高果糖玉米糖浆、氢化油、香精、色素、乳化剂等食品添加剂而制成的即食的、可口美味的食品,涵盖含糖饮料、巧克力、糖果、冰淇淋、即食酱汁、薯条、披萨、蛋糕、早餐谷物、婴幼儿配方奶粉、加热即食食品、加工肉制品、蒸馏酒等[1]。上述定义取自2019年“NOVA食物分类系统”是全球使用最为广泛的食品加工分类系统,并得到联合国粮农组织(Food and Agriculture Organization of the United Nations, FAO)的认可[2]。
UPFs具有高能量密度和低营养素密度的营养特点。一方面,为了提升食品的口感和延长保质期,UPFs通常添加了较多的饱和及反式脂肪、糖或盐,导致能量密度变大;另一方面,其制作需要经过多道加工工序,如高温加热、油炸、膨化和压制等,这些过程不仅会导致食物膳食纤维、矿物质、维生素等营养素的丢失,即营养密度变低,还会改变食物的结构,从而影响人体的饱腹感、食物转运时间、消化率、摄入营养素的生物利用度以及食物摄入速度和咀嚼的持续时间等[3–5],故摄入UPFs更易造成能量摄入过剩,重要的微量营养素和膳食纤维摄入过低,从而导致肥胖、糖尿病等健康问题的发生。
2. UPFs的历史
超加工食品的概念最早是由巴西圣保罗大学的营养学家卡洛斯·蒙特罗(Carlos Monteiro)于2009年提出的[6]。然而,对超加工食品的关注和抵制并非始于此,可以追溯到20世纪70至80年代的整体健康和环境健康运动中[7]。这一时期超市出现了大量的超加工食品,即添加了配料和/或添加剂的分解-重组食品[8]。当时社会普遍没有意识到超加工食品的潜在健康危害,少数对超加工食品提出警告的人常常被贴上“食品狂热分子”和“伪科学家”的标签[7]。直到近年来,随着健康问题的日益凸显,超加工食品才开始引起个人、公众和全球健康的广泛关注[7]。
3. UPFs国内外消费现状和趋势
UPFs的消费量在发达地区持续处于较高水平,美国[9]、英国[10]和加拿大[11]等高收入国家(high-income countries, HICs)中,UPFs人均供能比分别高达57.9%、56.8%和45.1%;巴西[12]、智利[13]、墨西哥[14]等中等收入国家UPFs人均供能比也分别达到19.7%、28.6%和29.8%。UPFs在中国的消费量于近几十年内急剧增加,1990年至2019年的估计数据表明,中国人群工业加工食品摄入的供能比已从1.5%增长到28.7%[15]。
2019年全球超加工固体食品(ultra-processed solid foods, UPSFs)和超加工饮料(ultra-processed beverages, UPBs)的销售数据显示,UPSFs在HICs的人均消费量(每年109.3 kg)远高于其他国家,分别达到中等偏上收入国家(upper-middle-income countries, UMICs)和中等偏下收入国家(lower-middle-income countries, LMICs)人均销售额的3.4倍(每年32.3 kg)和11.3倍(每年9.7 kg);UPBs在HICs的人均销售额(每年161.6 L)分别是UMICs和LMICs的2.4倍(每年68.5 L)和8.9倍(每年18.1 L)[16]。
在不同收入状况的国家中,UPSFs和UPBs的销售额都在增长,其中在HICs中总体增长较为缓慢,甚至有所停滞。从2009年至2019年,HICs、UMICs和LMICs的UPSFs人均销售额的复合年增长率分别为0.4%、2.8%和4.4%,UPBs人均销售额的复合年增长率分别为0.1%、2.2%和6.6%。中国作为UMICs之一,其UPSFs和UPBs人均销售额的复合年增长率分别为3.8%和3.5%[16]。Baker等[16]预计未来HICs的UPBs总销售额增长将停滞不前,UMICs和LMICs仍将保持强劲增长。2006、2012、2019和Baker等[16]预计的2024年UPSFs及UPBs人均销售额见图1A和图1B。由于目前UPFs的人均销售额在HICs中停滞不前,大型跨国食品公司将业务拓展至中低收入国家,积极寻求新的发展机会[17]。
2019年,UPSFs在不同收入国家的人均消费量依次为:HICs、UMICs、LMICs(图2A);UPBs与UPSFs呈现同样的趋势(图2B)。UPSFs消费种类在不同收入水平国家的差别十分明显,烘焙食品在HICs消费量最高,UMIC、LMICs则分别为固体调味料、咸味零食。UPBs消费量最高的种类在不同收入水平国家中没有差别,均为碳酸软饮料,次高为果汁饮料。以国家划分,UPSFs人均消费量最高的国家依次为:德国、美国、日本(图3A);UPBs人均消费量最高的国家依次为:美国、德国、日本(图3B)。从类型上看,以美国、德国为代表的欧美国家,烘焙食品消费占比最高,而在以中国、日本为代表的东亚地区,固体调味料消费量占比最高。UPBs高消费种类在不同地区差别也十分明显,欧美国家更偏好碳酸软饮料、果汁饮料、功能饮料;而中国、日本等东亚地区国家更偏好即饮(ready-to-drink, RTD)的茶和咖啡。不同地区的UPFs消费种类存在较大差异与当地居民特有的传统饮食偏好、文化和经济息息相关,并对各地的饮食摄入的加工程度产生巨大冲击[18–19]。
4. UPFs和多种健康结局
近年来,越来越多的证据表明,UPFs的高消费会对人类的健康产生负面影响[20–25]。在UPFs摄入与健康结局的剂量-反应关系的研究中,UPFs供能比通常被分成不同的分位数组别(多为3~5组),比较最高分位数组(Q3/Q4/Q5)与最低分位数组(Q1)健康结局的发病风险。
4.1 UPFs和超重/肥胖
超重/肥胖是过量摄入UPFs最常见的研究结局,多项系统评价显示,UPFs的消费与超重/肥胖的风险高度相关[22–24,26]。Moradi等[26]回顾了UPFs摄入与普通人群超重、肥胖和腹型肥胖风险之间的关系并进行荟萃分析(Meta),结果显示,与最低UPFs消费组相比,高UPFs消费与肥胖(OR=1.55,95%CI:1.36~1.77)、超重(RR=1.36,95%CI:1.14~1.63)、超重/肥胖(OR=1.29,95%CI:1.05~1.28)、腹型肥胖(OR=1.41,95%CI:1.18~1.68)的发生风险增加有关,并进一步揭示了两者间的剂量-反应关系呈线性:在成年人中,UPFs供能比每增加10%,发生肥胖、超重、超重/肥胖和腹型肥胖的风险分别增加7%、6%、3%。
4.2 UPFs和2型糖尿病
2型糖尿病发病率在全球不断攀升,是多种因素共同作用的结果,其中不健康饮食如UPFs会增加患2型糖尿病的风险。研究表明,高UPFs消费与2型糖尿病风险增加之间存在显著关联[27–28]。一项纳入18项纵向研究、涉及近110万名参与者的Meta分析研究显示,与不摄入UPFs相比,高UPFs摄入会增加31%的2型糖尿病发病风险(RR=1.31,95%CI:1.21~1.42)[27]。另一项分别纳入1项横断面研究和4项队列研究、涉及近23万名来自四个不同国家成年人的Meta研究结果进一步揭示了剂量-反应关系为线性关系,UPFs供能比每增加10%,成年人发生2型糖尿病的风险增加15%(RR=1.15,95%CI:1.06~1.26)[28]。
4.3 UPFs和心血管疾病
多项队列研究显示,UPFs的消费量与心血管疾病的发病率有关[29–31]。一项随访24.6年、纳入
26369 人的队列研究显示,UPFs摄入最高组与最低组相比(Q4:Q1),心血管疾病(RR=1.18,95%CI:1.08~1.29)和缺血性脑卒中(RR=1.17,95%CI:1.03~1.32)的发生风险分别增加了18%和17%,其中冠心病(RR=1.20,95%CI:1.07~1.35)的发生风险增加20%[31]。一项纳入7项队列、
207291 名成年人的Meta研究合并结果显示,与UPFs最低消费组相比,高UPFs消费增加了心血管疾病的死亡风险(HR=1.50,95%CI:1.37~1.63),其中心脏病的死亡风险增加最为显著,达66%[32]。4.3.1 UPFs和高血压
由于UPFs在加工过程中往往添加大量食盐、饱和脂肪和糖,且损失了膳食纤维和维生素等营养素,许多学者探究了UPFs与高血压的关系,认为UPFs消费与高血压风险呈正相关。Mendonça等[33]进行了一项UPFs摄入量与高血压风险关系的前瞻性队列研究,共纳入
14790 名基线时无高血压的大学生并随访9.1年。研究发现,随访中共发生1702 例高血压,最高UPFs消费组(Q3)比最低UPFs消费组(Q1)患高血压的风险更大(多变量校正HR=1.21,95%CI:1.06~1.37)。对美国3个队列的分析[34]结果显示,长期食用水果与降低成年人患高血压的风险有关,并据此推测高UPFs摄入的热量可能取代了健康水果和蔬菜的热量。一项纳入9项观察性研究(4项队列、5项横断面研究,111594 名参与者)的Meta分析结果显示,与最低UPFs消费组(Q1)相比,UPFs高消费组(Q3、Q4、Q5)显著增加了高血压的发病风险(总体OR=1.23,95%CI:1.11~1.37)[35]。4.4 UPFs和癌症
一项纳入了8项病例对照、3项前瞻性队列研究的Meta研究[36]结果显示,在校正了肥胖和总能量摄入等混杂因素后,UPFs供能比每增加10%,可能会增加13%的总体癌症发生风险(HR=1.13,95%CI:1.07~1.18)和11%的乳腺癌的发生风险(HR=1.11,95%CI:1.01~1.21)。此外,和最低UPFs消费组相比,高UPFs消费可能与直肠癌(OR=1.30,95%CI:1.11~1.51)和胰腺癌(HR=1.49,95%CI:1.07~2.07)的发生风险增加有关[36]。
英国的一项纳入了近20万名40~69岁参与者的前瞻性队列研究显示,UPFs消费每增加10%,可能会增加6%总体癌症死亡风险、30%卵巢癌相关死亡风险和16%乳腺癌相关死亡风险[37]。一项合并了2项队列研究的Meta研究却显示了不同的结果[38–39]:与UPFs最低消费组相比,高UPFs消费与癌症死亡风险无关(HR=1.00,95%CI:0.81~1.24,P=0.976)[32]。未来需要进一步开展高质量的前瞻性队列以验证UPFs和癌症死亡之间的关联。
4.5 UPFs和全因死亡
四项Meta研究的结果均显示,和最低的UPFs消费量相比,最高的UPFs消费与全因死亡呈正相关(RR=1.21~1.29)[22–23,32,40],其中Suksatan等[32]发表的Meta研究进一步揭示了线性的剂量-反应关系:在成年人中,UPFs供能比每增加10%,全因死亡风险增加15%(OR=1.15,95%CI:1.09~1.21)。
4.6 UPFs和焦虑抑郁
全球UPFs消费量的迅速增长与抑郁症的发展相关,和焦虑症的发展及预后之间的关系尚有争议。多项系统评价研究结果显示,与低UPFs消费相比,高UPFs消费与抑郁症相关[22–23,41–42]。一项纳入了2项队列研究、涉及
41627 人的Meta研究结果表明,在成人中,相比较低的UPFs消费量(热量范围为13.0%~35.2%),抑郁与较高的UPFs消费量(热量范围为29.0%~76.2%)显著相关(HR=1.22,95%CI:1.16~1.28)[23];另一项纳入了34项观察性研究的Meta研究显示,与不消费UPFs相比,消费UPFs能增加抑郁症风险(RR=1.28,95%CI:1.19~1.38),两者存在的剂量-反应关系呈线性:UPFs供能比每增加10%,成年人发生抑郁的风险增加11%(RR=1.11,95%CI:1.01~1.17)[42]。在UPFs消费量和焦虑关系的研究中,两项Meta研究显示出不同的结果。一项纳入1项队列和4项横断面研究的Meta研究结果显示,与不消费UPFs相比,UPFs消费与焦虑之间没有统计学关联(RR=1.35,95%CI:0.86~2.11)[42]。另一项纳入3个横断面研究的Meta研究结果却显示,更多的UPFs消费与焦虑症状(OR=1.48,95%CI:1.37~1.59)的发生风险增加有关[41]。未来需要进一步开展高质量的前瞻性队列以验证UPFs和焦虑之间的关联。
4.7 UPFs对特殊人群健康结局的影响
有多项研究表明,孕期过量摄入UPFs可能是增加不良母婴健康结局的一个危险因素。一项针对美国孕期饮食的纵向研究显示,怀孕期间从UPFs摄入的能量百分比每增加一个标准差,可使妊娠期体重过度增加的风险上升31%,且与孕期C反应蛋白和产后体重等指标均存在正相关关系(P<0.05)[43]。一项纳入61项(总人群包括
698803 名来自所有妊娠阶段的妇女)队列研究的Meta分析结果显示,孕妇高UPFs膳食与子痫前期发生风险增加28%相关、与妊娠期糖尿病的发生风险增加48%相关、与妊娠期高血压发生风险的增加无统计学关联[44]。一项荷兰鹿特丹围产期的前瞻性队列研究显示,孕妇从UPFs摄入的能量百分比每增加10%,胎儿的顶臀径(b=-0.041,95%CI:-0.074~-0.008),胚胎体积(b=-0.016,95%CI:-0.030~-0.001)的生长轨迹显著减小[45]。此外,基于三项前瞻性队列研究(
19958 对母子,中位随访时间4年,直至18岁或出现超重或肥胖)的合并结果显示,和母亲UPFs摄入量最低组相比,母亲UPFs摄入量最高组增加了后代26%超重/肥胖的发生风险(RR=1.26,95%CI:1.08~1.47)[46]。一项西班牙的出生队列研究显示,与孕妇妊娠期UPFs摄入量的最低三分位数(占总膳食能量的7.2%及以下)相比,孕妇妊娠期UPFs摄入量的最高三分位数(占总膳食能量的28.9%及以上)会让后代的语言发育维度得分更低(b=−2.29,95%CI:-4.13~-0.46)[47]。儿童和青少年是UPFs的主要消费人群[10,48–50],既往研究显示,在多个国家儿童青少年平均每天的总能量摄入中,从UPFs摄入的能量百分比达55%以上[48,51–53]。一项发表在《美国医学会杂志·儿科学》(JAMA Pediatrics)的前瞻性队列研究发现,儿童时期UPFs高摄入量与青春期和成年早期的肥胖率增加有关[54],与UPFs消费量最低的五分位数儿童相比,最高五分位数儿童的肥胖相关指标均有升高:BMI每年增加6%,体脂指数增加3%,体重增加2%,腰围增加0.17cm。童年是形成食物偏好和饮食习惯的关键时期,减少儿童接触和摄入UPFs,有助于改善儿童的肥胖问题。除了超重肥胖,UPFs还会对儿童青少年的骨骼生长[55]、龋齿发生[56]、睡眠质量和时间[57]等方面产生负面影响。
综上,未来还需要在充分控制混杂因素的情况下,开展良好的系统评价和高质量的前瞻性队列在不同人群中以进一步验证UPFs和多种健康结局之间的关联。
5. UPFs影响健康的可能因素和机制
除多道加工工序,如高温加热、油炸、膨化和压制等,造成营养素丢失、影响人体对食物的反应及容易造成能量摄入过剩等健康影响外,UPFs还存在其他潜在因素或通过某些机制作用于人体健康。
5.1 UPFs的优势引起饮食结构的改变
由于UPFs的烹饪方法简单,能使消费者在不经烹制或者简单烹制的情况下得到口感丰富的食物[58],可以很容易地取代手工制作的饭菜,节省时间和精力。此外,UPFs携带、食用方便,常被设计成不需要工具便能在任何地方食用[59],因此得到广大消费者的青睐。另外,得益于食品系统的工业化和技术革新,公司的全球整合采购、生产和分销网络流动[16],食物的制作规模化、运输变得更加简单快捷。这两大原因极大地提高了UPFs的可及性,改变了食物消费模式。
人群的饮食结构逐渐被UPFs所影响。美国评估了2009至2010年期间的居民膳食摄入量,发现随着UPFs的供能比增加,蛋白质、纤维、维生素A、C、D、E和锌、钾、磷、镁和钙的平均含量显著下降,而碳水化合物、添加糖和饱和脂肪含量增加。第五百分位(Q5)UPFs摄入的人群相较于Q1人群,其蛋白质供能比下降4.8%,碳水化合物供能比增加6.9%,添加糖供能比增加11.5%[60]。比利时2014年至2015年的一项研究显示,在参与者满足世界卫生组织盐摄入量建议(≤5 g·d−1)的消费天数中,UPFs饮食份额显著较低(P=
0.0194 ),未加工/最低加工食品的饮食份额显著较高(P<0.001)[61]。在包括美国、加拿大、英国和澳大利亚在内的HICs,UPFs已成为重要的,某些情况下更是主要的膳食能量来源[16]。针对加拿大的一项研究显示,从1938/1939年到2001年,未加工或最低限度加工食品和烹饪配料的供能比分别从34.3%下降到25.6%,从37.0%下降到12.7%,UPFs的供能比从24.4%上升至54.9%[49]。在当前时代,UPFs呈现食品系统全球化的特点。高脂肪、高糖和高盐的UPFs被越来越多地获得,其在UMICs和LMICs正在发生的“营养转型”中发挥着关键作用,包括从传统饮食转向与肥胖和饮食相关非传染性疾病有关的饮食[19,62–64]。5.2 UPFs中碳水化合物与脂肪共同暴露增加摄食欲望
大量的精制碳水化合物和脂肪普遍存在于UPFs中,这两者的共同暴露可能对大脑的奖励中枢产生“成瘾”作用,在大脑纹状体中“唤醒”细胞外多巴胺,从而在大脑中产生快感和满足感,并增加对食物的欲望和动机。长期过量摄入这些成瘾性食物可能导致大脑奖励中枢的改变,使能量的实际摄入量远超需求量,进而导致超重、肥胖等问题的产生[65–68]。
5.3 UPFs加工过程产生有害化合物
UPFs加工过程复杂,工序多样,以煎炸、油炸、烧烤、熏烤等高温过程突出。加工涉及多种化学、物理和生物作用,在改变食物质地、口感和营养价值的同时也会产生一些潜在的有害化合物,如多环芳烃(polycyclic aromatic hydrocarbons, PAHs)、呋喃、晚期糖基化终产物(advanced glycation end products, AGEs)、反式脂肪酸(trans fatty acids, TFA)、杂环胺、丙烯酰胺等。
食品中PAHs的形成是一个极其复杂的过程。PAHs形成存在三种可能机制,烹饪燃料和脂肪滴于明火中燃烧被广泛认为是加工食品中PAHs形成的主要原因[69];第二,源于热解促进食品中有机物(如蛋白质、脂肪和碳水化合物)的氧化,小分子PAH主要在200~300 ℃左右产生[70–71];第三,长期储存于低温下的脂质氧化也可能诱导PAHs形成,如在25 ℃下储存270 d的大豆油和菜籽油以及在25 ℃下储存的牛肉饼中,PAHs显著增加[72]。PAHs生成后,燃料烟雾会将其带到食料表面,进而通过表面吸附或内部渗透的方式进入食品中。pH值、包装等其他因素也会影响食品中PAHs的含量[73]。
呋喃的生成与加热食材中所含化合物及加热条件有关。呋喃主要由食品原料中糖类、氨基酸、抗坏血酸、多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)及类胡萝卜素等成分在高温加热(如煎炸、烘烤)等过程中的美拉德反应或氧化降解反应产生[74]。一般而言,120 ℃以上高温会增加呋喃的生成[75]。而UPFs的加工工艺往往包括高温加热。研究表明,婴儿呋喃暴露贡献率最高的食物类别为即食食品类[76]。呋喃与致癌作用有关的间接机制包括氧化应激、基因表达改变、表观遗传变化和炎症等[76]。
AGEs主要是蛋白质游离氨基与还原糖的羰基经过非酶褐变途径产生的一系列复杂的有害产物[77]。AGEs在体内有两个来源,一是过量的还原糖和蛋白质在体内合成AGEs,二是通过进食摄入食物中的AGEs[78]。在食品加工过程中,AGEs主要通过非酶反应,包括美拉德反应和脂质氧化生成,因此高温煎炒、烘烤、油炸等加工方式可能会导致食物中其含量增加[79]。
UPFs中的TFA主要来源于两方面。第一,在高温加工过程中,食用油中的不饱和脂肪酸发生氧化反应和热反应生成TFA;第二,为了使口感更美味和节省生产成本,人为将含有较高TFA的食物原料(如代可可脂、人造黄油)添加至UPFs中。含较高TFA的部分氢化植物油在很长的一段时间内被认为是动物脂肪更健康的替代品[80]。我国食品安全国家标准GB 15196-2015《食用油脂制品》定义了食用油脂制品(如人造奶油、代可可脂、植脂奶油),其中经氢化工艺加工的食用油脂制品应标识反式脂肪。有研究表明,UPFs是突尼斯学龄前和学龄儿童总脂肪、饱和脂肪酸和TFA的主要来源[81];烘焙食品是加拿大孕妇反式脂肪酸的主要膳食来源[82];过量摄入食用TFA可增加胰岛素抵抗水平,导致血脂异常,并增加C反应蛋白水平,促进全身炎症反应,从而导致糖尿病、动脉粥样硬化、心力衰竭及心血管疾病引发猝死等风险增加[83–84];前瞻性流行病学研究证据表明,中年以后摄入较高TFA还与认知能力下降速度加快有关[85]。
杂环胺是一类通常在富含蛋白质的食品烹饪或加工过程中形成的化学物质[86]。杂环胺主要通过美拉德反应形成,其成分和种类随加工方法的不同而变化,烧烤、油炸和烘烤等高温处理方式容易导致杂环胺的形成,高温和较长加热时间可以增加杂环胺的产量[87]。大量动物实验证明杂环胺具有致癌作用,包括肝癌和肠癌[88–89],流行病学调查显示,杂环胺与胰腺癌、前列腺癌、肺癌、乳腺癌、结肠癌和胃癌等的发病率之间显著相关[90]。
食品中产生丙烯酰胺的主要途径是美拉德反应。由于参与丙烯酰胺形成的反应物(葡萄糖/果糖和天冬酰胺)天然存在于植物性食品中,土豆和谷物经高温加热后可产生大量丙烯酰胺,而肉制品几乎不含丙烯酰胺[91]。研究表明,丙烯酰胺可能具有致癌性[92]、增加心血管疾病风险[93],还可能导致胰岛素抵抗[94]。但也有研究认为,现有流行病学和毒理学证据不足以表明膳食来源的丙烯酰胺会对健康产生不利影响,尤其是癌症[95]。
丙烯醛在食品中普遍存在,主要与煎炸、烘烤和发酵有关[96]。丙烯醛的主要来源是PUFA过氧化[96],此外,糖的热解[97]和美拉德[98]反应均可能产生丙烯醛。研究表明,丙烯醛可能增加心血管疾病风险[99],还可能和胰岛素抵抗有关[100]。
5.4 UPFs包装材料的外源性食品污染物迁移
在长期存放的过程中,UPFs包装材料中邻苯二甲酸酯、双酚类化合物和微塑料等外源性食品污染物可能会发生迁移,对人体健康产生潜在影响[101–102]。邻苯二甲酸盐和双酚广泛分布于多种消费品和工业产品中,摄入是主要的暴露途径。由于不进行化学结合,用于食品接触材料或食品加工塑料的邻苯二甲酸酯和双酚可以转移到食品中[103]。有研究显示,UPFs的消费量增加了尿中邻苯二甲酸酯和双酚的浓度[104–105],而双酚可能与心血管疾病[102]、2型糖尿病[106]和肥胖[107]的风险增加有关。Buckley等[105]使用2013至2014年美国全国健康和营养监测调查数据进行分析,发现更高的UPFs摄入量与尿液更高的邻苯二甲酸酯浓度有关,其中UPFs摄入与邻苯二甲酸单(6-羧基-2-甲基庚基)酯之间的相关性最强,呈线性关系:UPFs供能比每增加10%,尿液邻苯二甲酸单(6-羧基-2-甲基庚基)酯浓度高8.0%(95%CI:5.6%~10.3%),表明UPFs摄入可能会增加食品包装和生产中使用的邻苯二甲酸盐的暴露。
5.5 UPFs中食品添加剂的添加
UPFs在加工过程中往往使用更多种类和更高剂量的食品添加剂[1]。既往研究显示,过量摄入食品添加剂可能会干扰肠道微生物群稳态[29],增加肥胖[108]、2型糖尿病[109]、炎症性肠病[110]、癌症[111]等疾病的发生风险。例如,无热量人造甜味剂可能会影响人类的葡萄糖耐量,其中肠道微生物群起着核心作用[109],人体摄入后,拟杆菌数量会过度增加,而梭状芽孢杆菌数量会减少,这种肠道微生物群的失调将增加人类2型糖尿病的发生风险[109]。
6. 结语
UPFs是经过一系列复杂的加工工序并添加糖、油、盐以及一系列工业配料而制成的即食的、可口美味的食品,通常具有高能量密度和低营养素密度的营养特点。研究显示,高UPFs摄入会增加成人超重/肥胖、2型糖尿病、高血压、癌症、心脑血管疾病发生/死亡、全因死亡、抑郁症、孕妇体重过度增加、子痫前期、妊娠期高血压、妊娠期糖尿病及儿童青少年超重/肥胖等健康问题的发生风险。
UPFs产生这些健康危害的原因主要为:过量摄入UPFs摄入会改变膳食结构,会对大脑的奖励中枢产生“成瘾”作用,增加对食物的欲望和动机,从而进一步导致能量摄入过剩。UPFs在生产和储存的过程中还可能会引入呋喃、杂环胺、多环芳烃、丙烯醛、晚期糖基化终产物、丙烯酰胺、邻苯二甲酸酯、双酚类化合物和微塑料等有毒化合物,进而加剧健康危害。近几十年来,UPFs的消费量在全球范围内急剧增加,尽管我国对UPFs的研究较少,但考虑到上述危害和现状,亟须进一步监测我国人群UPFs的摄入并开展相关风险评估,研究其对人体健康的影响和机制。另外,需要更深入地探索更健康的食品加工技术,在满足消费者对食品口感和便利性需求的同时兼顾消费者的健康。科普方面,建议相关部门通过多种形式或渠道普及UPFs的概念和潜在风险,提高公众的健康意识,引导健康消费。
-
-
[1] MONTEIRO C A, CANNON G, LEVY R B, et al. Ultra-processed foods: what they are and how to identify them[J]. Public Health Nutr, 2019, 22(5): 936-941. doi: 10.1017/S1368980018003762
[2] MONTEIRO C A, CANNON G, LAWRENCE M, et al. Ultra-processed foods, diet quality, and health using the NOVA classification system[R]. Rome: FAO, 2019.
[3] DUPONT D, LE FEUNTEUN S, MARZE S, et al. Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability[J]. Innovative Food Sci Emerging Technol, 2018, 46: 83-90. doi: 10.1016/j.ifset.2017.10.005
[4] WAHLQVIST M L. Food structure is critical for optimal health[J]. Food Funct, 2016, 7(3): 1245-1250. doi: 10.1039/C5FO01285F
[5] FORDE C G, MARS M, DE GRAAF K. Ultra-processing or oral processing? A role for energy density and eating rate in moderating energy intake from processed foods[J]. Curr Dev Nutr, 2020, 4(3): nzaa019. doi: 10.1093/cdn/nzaa019
[6] MONTEIRO C A. Nutrition and health. The issue is not food, nor nutrients, so much as processing[J]. Public Health Nutr, 2009, 12(5): 729-731. doi: 10.1017/S1368980009005291
[7] LOGAN A C, D'ADAMO C R, PIZZORNO J E, et al. "Food faddists and pseudoscientists!": reflections on the history of resistance to ultra-processed foods[J]. Explore (NY), 2024, 20(4): 470-476. doi: 10.1016/j.explore.2023.12.014
[8] FARDET A. Characterization of the degree of food processing in relation with its health potential and effects[J]. Adv Food Nutr Res, 2018, 85: 79-129.
[9] MARTÍNEZ STEELE E, BARALDI L G, DA COSTA LOUZADA M L, et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study[J]. BMJ Open, 2016, 6(3): e009892. doi: 10.1136/bmjopen-2015-009892
[10] RAUBER F, DA COSTA LOUZADA M L, MARTINEZ STEELE E, et al. Ultra-processed foods and excessive free sugar intake in the UK: a nationally representative cross-sectional study[J]. BMJ Open, 2019, 9(10): e027546. doi: 10.1136/bmjopen-2018-027546
[11] NARDOCCI M, LECLERC B S, LOUZADA M L, et al. Consumption of ultra-processed foods and obesity in Canada[J]. Can J Public Health, 2019, 110(1): 4-14. doi: 10.17269/s41997-018-0130-x
[12] DA COSTA LOUZADA M L, DA CRUZ G L, SILVA K A A N, et al. Consumption of ultra-processed foods in Brazil: distribution and temporal evolution 2008-2018[J]. Rev Saude Publica, 2023, 57: 12. doi: 10.11606/s1518-8787.2023057004744
[13] CEDIEL G, REYES M, DA COSTA LOUZADA M L, et al. Ultra-processed foods and added sugars in the Chilean diet (2010)[J]. Public Health Nutr, 2018, 21(1): 125-133. doi: 10.1017/S1368980017001161
[14] MARRÓN-PONCE J A, SÁNCHEZ-PIMIENTA T G, DA COSTA LOUZADA M L, et al. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population[J]. Public Health Nutr, 2018, 21(1): 87-93. doi: 10.1017/S1368980017002129
[15] FARDET A, AUBRUN K, ROCK E. Nutrition transition and chronic diseases in China (1990-2019): industrially processed and animal calories rather than nutrients and total calories as potential determinants of the health impact[J]. Public Health Nutr, 2021, 24(16): 5561-5575. doi: 10.1017/S1368980021003311
[16] BAKER P, MACHADO P, SANTOS T, et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers[J]. Obes Rev, 2020, 21(12): e13126. doi: 10.1111/obr.13126
[17] BAKER P, FRIEL S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia[J]. Global Health, 2016, 12(1): 80. doi: 10.1186/s12992-016-0223-3
[18] Pan American Health Organization, World Health Organization. Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications[R]. Washington, DC: Pan American Health Organization, World Health Organization, 2015.
[19] BAKER P, FRIEL S. Processed foods and the nutrition transition: evidence from Asia[J]. Obes Rev, 2014, 15(7): 564-577. doi: 10.1111/obr.12174
[20] ELIZABETH L, MACHADO P, ZINÖCKER M, et al. Ultra-processed foods and health outcomes: a narrative review[J]. Nutrients, 2020, 12(7): 1955. doi: 10.3390/nu12071955
[21] CHEN X, ZHANG Z, YANG H, et al. Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies[J]. Nutr J, 2020, 19(1): 86. doi: 10.1186/s12937-020-00604-1
[22] PAGLIAI G, DINU M, MADARENA M P, et al. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis[J]. Br J Nutr, 2021, 125(3): 308-318. doi: 10.1017/S0007114520002688
[23] LANE M M, DAVIS J A, BEATTIE S, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies[J]. Obes Rev, 2021, 22(3): e13146. doi: 10.1111/obr.13146
[24] ASKARI M, HESHMATI J, SHAHINFAR H, et al. Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies[J]. Int J Obes (Lond), 2020, 44(10): 2080-2091. doi: 10.1038/s41366-020-00650-z
[25] SILVA MENEGUELLI T, VIANA HINKELMANN J, HERMSDORFF H H M, et al. Food consumption by degree of processing and cardiometabolic risk: a systematic review[J]. Int J Food Sci Nutr, 2020, 71(6): 678-692. doi: 10.1080/09637486.2020.1725961
[26] MORADI S, ENTEZARI M H, MOHAMMADI H, et al. Ultra-processed food consumption and adult obesity risk: a systematic review and dose-response meta-analysis[J]. Crit Rev Food Sci Nutr, 2023, 63(2): 249-260. doi: 10.1080/10408398.2021.1946005
[27] DELPINO F M, FIGUEIREDO L M, BIELEMANN R M, et al. Ultra-processed food and risk of type 2 diabetes: a systematic review and meta-analysis of longitudinal studies[J]. Int J Epidemiol, 2022, 51(4): 1120-1141. doi: 10.1093/ije/dyab247
[28] MORADI S, HOJJATI KERMANI M A, BAGHERI R, et al. Ultra-processed food consumption and adult diabetes risk: a systematic review and dose-response meta-analysis[J]. Nutrients, 2021, 13(12): 4410. doi: 10.3390/nu13124410
[29] SROUR B, FEZEU L K, KESSE-GUYOT E, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé)[J]. BMJ, 2019, 365: l1451.
[30] JUUL F, VAIDEAN G, LIN Y, et al. Ultra-processed foods and incident cardiovascular disease in the framingham offspring study[J]. J Am Coll Cardiol, 2021, 77(12): 1520-1531. doi: 10.1016/j.jacc.2021.01.047
[31] LI H, WANG Y, SONESTEDT E, et al. Associations of ultra-processed food consumption, circulating protein biomarkers, and risk of cardiovascular disease[J]. BMC Med, 2023, 21(1): 415. doi: 10.1186/s12916-023-03111-2
[32] SUKSATAN W, MORADI S, NAEINI F, et al. Ultra-processed food consumption and adult mortality risk: a systematic review and dose-response meta-analysis of 207, 291 participants[J]. Nutrients, 2021, 14(1): 174. doi: 10.3390/nu14010174
[33] DE DEUS MENDONÇA R, LOPES A C S, PIMENTA A M, et al. Ultra-processed food consumption and the incidence of hypertension in a mediterranean cohort: the seguimiento universidad de navarra project[J]. Am J Hypertens, 2017, 30(4): 358-366. doi: 10.1093/ajh/hpw137
[34] BORGI L, MURAKI I, SATIJA A, et al. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies[J]. Hypertension, 2016, 67(2): 288-293. doi: 10.1161/HYPERTENSIONAHA.115.06497
[35] WANG M, DU X, HUANG W, et al. Ultra-processed foods consumption increases the risk of hypertension in adults: a systematic review and meta-analysis[J]. Am J Hypertens, 2022, 35(10): 892-901. doi: 10.1093/ajh/hpac069
[36] ISAKSEN I M, DANKEL S N. Ultra-processed food consumption and cancer risk: A systematic review and meta-analysis[J]. Clin Nutr, 2023, 42(6): 919-928. doi: 10.1016/j.clnu.2023.03.018
[37] CHANG K, GUNTER M J, RAUBER F, et al. Ultra-processed food consumption, cancer risk and cancer mortality: a large-scale prospective analysis within the UK Biobank[J]. eClinicalMedicine, 2023, 56: 101840. doi: 10.1016/j.eclinm.2023.101840
[38] RICO-CAMPÀ A, MARTÍNEZ-GONZÁLEZ M A, ALVAREZ-ALVAREZ I, et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study[J]. BMJ, 2019, 365: l1949.
[39] BLANCO-ROJO R, SANDOVAL-INSAUSTI H, LÓPEZ-GARCIA E, et al. Consumption of ultra-processed foods and mortality: a national prospective cohort in spain[J]. Mayo Clin Proc, 2019, 94(11): 2178-2188. doi: 10.1016/j.mayocp.2019.03.035
[40] TANERI P E, WEHRLI F, ROA-DÍAZ Z M, et al. Association between ultra-processed food intake and all-cause mortality: a systematic review and meta-analysis[J]. Am J Epidemiol, 2022, 191(7): 1323-1335. doi: 10.1093/aje/kwac039
[41] LANE M M, GAMAGE E, TRAVICA N, et al. Ultra-processed food consumption and mental health: a systematic review and meta-analysis of observational studies[J]. Nutrients, 2022, 14(13): 2568. doi: 10.3390/nu14132568
[42] MAZLOOMI S N, TALEBI S, MEHRABANI S, et al. The association of ultra-processed food consumption with adult mental health disorders: a systematic review and dose-response meta-analysis of 260, 385 participants[J]. Nutr Neurosci, 2023, 26(10): 913-931. doi: 10.1080/1028415X.2022.2110188
[43] CUMMINGS J R, LIPSKY L M, SCHWEDHELM C, et al. Associations of ultra-processed food intake with maternal weight change and cardiometabolic health and infant growth[J]. Int J Behav Nutr Phys Act, 2022, 19(1): 61. doi: 10.1186/s12966-022-01298-w
[44] PAULA W O, PATRIOTA E S O, GONÇALVES V S S, et al. Maternal consumption of ultra-processed foods-rich diet and perinatal outcomes: a systematic review and meta-analysis[J]. Nutrients, 2022, 14(15): 3242. doi: 10.3390/nu14153242
[45] SMIT A J P, HOJEIJ B, ROUSIAN M, et al. A high periconceptional maternal ultra-processed food consumption impairs embryonic growth: the rotterdam periconceptional cohort[J]. Clin Nutr, 2022, 41(8): 1667-1675. doi: 10.1016/j.clnu.2022.06.006
[46] WANG Y, WANG K, DU M, et al. Maternal consumption of ultra-processed foods and subsequent risk of offspring overweight or obesity: results from three prospective cohort studies[J]. BMJ, 2022, 379: e071767.
[47] PUIG-VALLVERDÚ J, ROMAGUERA D, FERNÁNDEZ-BARRÉS S, et al. The association between maternal ultra-processed food consumption during pregnancy and child neuropsychological development: a population-based birth cohort study[J]. Clin Nutr, 2022, 41(10): 2275-2283. doi: 10.1016/j.clnu.2022.08.005
[48] MACHADO P P, STEELE E M, DA COSTA LOUZADA M L, et al. Ultra-processed food consumption drives excessive free sugar intake among all age groups in Australia[J]. Eur J Nutr, 2020, 59(6): 2783-2792. doi: 10.1007/s00394-019-02125-y
[49] MOUBARAC J C, BATAL M, MARTINS A P B, et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011[J]. Can J Diet Pract Res, 2014, 75(1): 15-21. doi: 10.3148/75.1.2014.15
[50] BARALDI L G, MARTINEZ STEELE E, CANELLA D S, et al. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study[J]. BMJ Open, 2018, 8(3): e020574. doi: 10.1136/bmjopen-2017-020574
[51] MARTINES R M, MACHADO P P, NERI D A, et al. Association between watching TV whilst eating and children's consumption of ultraprocessed foods in United Kingdom[J]. Matern Child Nutr, 2019, 15(4): e12819. doi: 10.1111/mcn.12819
[52] MOUBARAC J C, BATAL M, LOUZADA M L, et al. Consumption of ultra-processed foods predicts diet quality in Canada[J]. Appetite, 2017, 108: 512-520. doi: 10.1016/j.appet.2016.11.006
[53] NERI D, MARTINEZ-STEELE E, MONTEIRO C A, et al. Consumption of ultra-processed foods and its association with added sugar content in the diets of US children, NHANES 2009-2014[J]. Pediatr Obes, 2019, 14(12): e12563. doi: 10.1111/ijpo.12563
[54] CHANG K, KHANDPUR N, NERI D, et al. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort[J]. JAMA Pediatr, 2021, 175(9): e211573. doi: 10.1001/jamapediatrics.2021.1573
[55] ZARETSKY J, GRIESS-FISHHEIMER S, CARMI A, et al. Ultra-processed food targets bone quality via endochondral ossification[J]. Bone Res, 2021, 9(1): 14. doi: 10.1038/s41413-020-00127-9
[56] CASCAES A M, DA SILVA N R J, DOS SANTOS FERNANDEZ M, et al. Ultra-processed food consumption and dental caries in children and adolescents: a systematic review and meta-analysis[J]. Br J Nutr, 2023, 129(8): 1370-1379. doi: 10.1017/S0007114522002409
[57] DELPINO F M, FIGUEIREDO L M, FLORES T R, et al. Intake of ultra-processed foods and sleep-related outcomes: a systematic review and meta-analysis[J]. Nutrition, 2023, 106: 111908. doi: 10.1016/j.nut.2022.111908
[58] MARTÍ DEL MORAL A, CALVO C, MARTÍNEZ A. Ultra-processed food consumption and obesity-a systematic review[J]. Nutr Hosp, 2021, 38(1): 177-185.
[59] LUDWIG D S. Technology, diet, and the burden of chronic disease[J]. JAMA, 2011, 305(13): 1352-1353. doi: 10.1001/jama.2011.380
[60] MARTÍNEZ STEELE E, POPKIN B M, SWINBURN B, et al. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study[J]. Popul Health Metr, 2017, 15(1): 6. doi: 10.1186/s12963-017-0119-3
[61] VANDEVIJVERE S, DE RIDDER K, FIOLET T, et al. Consumption of ultra-processed food products and diet quality among children, adolescents and adults in Belgium[J]. Eur J Nutr, 2019, 58(8): 3267-3278. doi: 10.1007/s00394-018-1870-3
[62] MONTEIRO C A, LEVY R B, CLARO R M, et al. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil[J]. Public Health Nutr, 2010, 14(1): 5-13. doi: 10.1017/S1368980010003241
[63] POPKIN B M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases[J]. Am J Clin Nutr, 2006, 84(2): 289-298. doi: 10.1093/ajcn/84.2.289
[64] POPKIN B M, ADAIR L S, NG S W. Global nutrition transition and the pandemic of obesity in developing countries[J]. Nutr Rev, 2012, 70(1): 3-21. doi: 10.1111/j.1753-4887.2011.00456.x
[65] ROGERS P J, BRUNSTROM J M. Appetite and energy balancing[J]. Physiol Behav, 2016, 164: 465-471. doi: 10.1016/j.physbeh.2016.03.038
[66] SCHULTE E M, AVENA N M, GEARHARDT A N. Which foods may be addictive? The roles of processing, fat content, and glycemic load[J]. PLoS One, 2015, 10(2): e0117959. doi: 10.1371/journal.pone.0117959
[67] MATTES R, FOSTER G D. Research issues: the food environment and obesity[J]. Am J Clin Nutr, 2014, 100(6): 1663-1665. doi: 10.3945/ajcn.114.096883
[68] STICE E, SPOOR S, BOHON C, et al. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study[J]. J Abnorm Psychol, 2008, 117(4): 924-935. doi: 10.1037/a0013600
[69] WANG H, WANG C, LI C, et al. Effects of phenolic acid marinades on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled chicken wings[J]. J Food Prot, 2019, 82(4): 684-690. doi: 10.4315/0362-028X.JFP-18-420
[70] CHEN B H, CHEN Y C. Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids[J]. J Agric Food Chem, 2001, 49(11): 5238-5243. doi: 10.1021/jf0106906
[71] MCGRATH T E, WOOTEN J B, GEOFFREY CHAN W, et al. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation[J]. Food Chem Toxicol, 2007, 45(6): 1039-1050. doi: 10.1016/j.fct.2006.12.010
[72] ZHAO X, GONG G, WU S. Effect of storage time and temperature on parent and oxygenated polycyclic aromatic hydrocarbons in crude and refined vegetable oils[J]. Food Chem, 2018, 239: 781-788. doi: 10.1016/j.foodchem.2017.07.016
[73] CHEN J, CHEN S. Removal of polycyclic aromatic hydrocarbons by low density polyethylene from liquid model and roasted meat[J]. Food Chem, 2005, 90(3): 461-469. doi: 10.1016/j.foodchem.2004.05.010
[74] 柴晓玲, 郝雅茹, 李书国. 热加工食品中呋喃的形成途径及减控措施的研究进展[J]. 粮食与油脂, 2020, 33(11): 23-25. doi: 10.3969/j.issn.1008-9578.2020.11.008 CHAI X L, HAO Y R, LI S G. Research progress on the formation and mitigation strategies of furan in heat-processed foods[J]. Cereals Oils, 2020, 33(11): 23-25. doi: 10.3969/j.issn.1008-9578.2020.11.008
[75] KIM M Y, HER J Y, KIM M K, et al. Formation and reduction of furan in a soy sauce model system[J]. Food Chem, 2015, 189: 114-119. doi: 10.1016/j.foodchem.2015.02.015
[76] EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for public health related to the presence of furan and methylfurans in food[J]. EFSA J, 2017, 15(10): e05005.
[77] POULSEN M W, HEDEGAARD R V, ANDERSEN J M, et al. Advanced glycation endproducts in food and their effects on health[J]. Food Chem Toxicol, 2013, 60: 10-37. doi: 10.1016/j.fct.2013.06.052
[78] ARAGNO M, MASTROCOLA R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease[J]. Nutrients, 2017, 9(4): 385. doi: 10.3390/nu9040385
[79] URIBARRI J, WOODRUFF S, GOODMAN S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet[J]. J Am Diet Assoc, 2010, 110(6): 911-916.e12. doi: 10.1016/j.jada.2010.03.018
[80] MICHA R, MOZAFFARIAN D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes[J]. Nat Rev Endocrinol, 2009, 5(6): 335-344. doi: 10.1038/nrendo.2009.79
[81] DOGUI D, DOGGUI R, AL-JAWALDEH A, et al. Ultra-processed foods are the major sources of total fat, saturated and trans-fatty acids among tunisian preschool and school children: a cross-sectional study[J]. Children (Basel), 2022, 9(2): 126.
[82] ELIAS S L, INNIS S M. Bakery foods are the major dietary source of trans-fatty acids among pregnant women with diets providing 30 percent energy from fat[J]. J Am Diet Assoc, 2002, 102(1): 46-51. doi: 10.1016/S0002-8223(02)90015-5
[83] MOZAFFARIAN D, KATAN M B, ASCHERIO A, et al. Trans fatty acids and cardiovascular disease[J]. N Engl J Med, 2006, 354(15): 1601-1613. doi: 10.1056/NEJMra054035
[84] LOPEZ-GARCIA E, SCHULZE M B, MEIGS J B, et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction[J]. J Nutr, 2005, 135(3): 562-566. doi: 10.1093/jn/135.3.562
[85] MORRIS M C, EVANS D A, BIENIAS J L, et al. Dietary fat intake and 6-year cognitive change in an older biracial community population[J]. Neurology, 2004, 62(9): 1573-1579. doi: 10.1212/01.WNL.0000123250.82849.B6
[86] GIBIS M. Heterocyclic aromatic amines in cooked meat products: causes, formation, occurrence, and risk assessment[J]. Compr Rev Food Sci Food Saf, 2016, 15(2): 269-302. doi: 10.1111/1541-4337.12186
[87] LIAO G Z, WANG G Y, XU X L, et al. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast[J]. Meat Sci, 2010, 85(1): 149-154. doi: 10.1016/j.meatsci.2009.12.018
[88] IM J, CHOI H S, KIM S K, et al. A food-born heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP), suppresses tumor necrosis factor-α expression in lipoteichoic acid-stimulated RAW 264.7 cells[J]. Cancer Lett, 2009, 274(1): 109-117. doi: 10.1016/j.canlet.2008.09.003
[89] PAPIER K, FENSOM G K, KNUPPEL A, et al. Meat consumption and risk of 25 common conditions: outcome-wide analyses in 475, 000 men and women in the UK Biobank study[J]. BMC Med, 2021, 19(1): 53. doi: 10.1186/s12916-021-01922-9
[90] GUO J, VILLALTA P W, WEIGHT C J, et al. Targeted and untargeted detection of DNA adducts of aromatic amine carcinogens in human bladder by ultra-performance liquid chromatography-high-resolution mass spectrometry[J]. Chem Res Toxicol, 2018, 31(12): 1382-1397. doi: 10.1021/acs.chemrestox.8b00268
[91] TAREKE E, RYDBERG P, KARLSSON P, et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs[J]. J Agric Food Chem, 2002, 50(17): 4998-5006. doi: 10.1021/jf020302f
[92] VIRK-BAKER M K, NAGY T R, BARNES S, et al. Dietary acrylamide and human cancer: a systematic review of literature[J]. Nutr Cancer, 2014, 66(5): 774-790. doi: 10.1080/01635581.2014.916323
[93] ZHANG Y, HUANG M, ZHUANG P, et al. Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003-2006[J]. Environ Int, 2018, 117: 154-163. doi: 10.1016/j.envint.2018.04.047
[94] LIN C Y, LIN Y C, KUO H K, et al. Association among acrylamide, blood insulin, and insulin resistance in adults[J]. Diabetes Care, 2009, 32(12): 2206-2211. doi: 10.2337/dc09-0309
[95] LINEBACK D R, COUGHLIN J R, STADLER R H. Acrylamide in foods: a review of the science and future considerations[J]. Annu Rev Food Sci Technol, 2012, 3: 15-35. doi: 10.1146/annurev-food-022811-101114
[96] JIANG K, HUANG C, LIU F, et al. Origin and fate of acrolein in foods[J]. Foods, 2022, 11(13): 1976. doi: 10.3390/foods11131976
[97] FANG Y, WU J, SUN W, et al. Pyrolysis of precious Chinese Xuan paper containing ammonium phytate as a flame retardant[J]. ACS Omega, 2022, 7(42): 37971-37979. doi: 10.1021/acsomega.2c05138
[98] PFEIFER Y V, KROH L W. Investigation of reactive α-dicarbonyl compounds generated from the Maillard reactions of L-methionine with reducing sugars via their stable quinoxaline derivatives[J]. J Agric Food Chem, 2010, 58(14): 8293-8299. doi: 10.1021/jf1008988
[99] DEJARNETT N, CONKLIN D J, RIGGS D W, et al. Acrolein exposure is associated with increased cardiovascular disease risk[J]. J Am Heart Assoc, 2014, 3(4): e000934. doi: 10.1161/JAHA.114.000934
[100] FEROE A G, ATTANASIO R, SCINICARIELLO F. Acrolein metabolites, diabetes and insulin resistance[J]. Environ Res, 2016, 148: 1-6. doi: 10.1016/j.envres.2016.03.015
[101] RADKE E G, GALIZIA A, THAYER K A, et al. Phthalate exposure and metabolic effects: a systematic review of the human epidemiological evidence[J]. Environ Int, 2019, 132: 104768. doi: 10.1016/j.envint.2019.04.040
[102] RANCIÈRE F, LYONS J G, LOH V H Y, et al. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence[J]. Environ Health, 2015, 14(1): 46. doi: 10.1186/s12940-015-0036-5
[103] KOCH H M, CALAFAT A M. Human body burdens of chemicals used in plastic manufacture[J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1526): 2063-2078. doi: 10.1098/rstb.2008.0208
[104] STEELE E M, KHANDPUR N, DA COSTA LOUZADA M L, et al. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older[J]. PLoS One, 2020, 15(7): e0236738. doi: 10.1371/journal.pone.0236738
[105] BUCKLEY J P, KIM H, WONG E, et al. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US national health and nutrition examination survey, 2013-2014[J]. Environ Int, 2019, 131: 105057. doi: 10.1016/j.envint.2019.105057
[106] HWANG S, LIM J E, CHOI Y, et al. Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis[J]. BMC Endocr Disord, 2018, 18(1): 81. doi: 10.1186/s12902-018-0310-y
[107] CARWILE J L, MICHELS K B. Urinary bisphenol A and obesity: NHANES 2003-2006[J]. Environ Res, 2011, 111(6): 825-830. doi: 10.1016/j.envres.2011.05.014
[108] PEARLMAN M, OBERT J, CASEY L. The association between artificial sweeteners and obesity[J]. Curr Gastroenterol Rep, 2017, 19(12): 64. doi: 10.1007/s11894-017-0602-9
[109] SUEZ J, KOREM T, ZEEVI D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota[J]. Nature, 2014, 514(7521): 181-186. doi: 10.1038/nature13793
[110] HE Z, CHEN L, CATALAN-DIBENE J, et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23[J]. Cell Metab, 2021, 33(7): 1358-1371.e5. doi: 10.1016/j.cmet.2021.04.015
[111] DEBRAS C, CHAZELAS E, SROUR B, et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study[J]. PLoS Med, 2022, 19(3): e1003950. doi: 10.1371/journal.pmed.1003950