Effects of inhalation of polyhexamethylene guanidine disinfectant aerosol on immune organs and immune cells in mice
-
摘要:背景
自加湿器消毒剂事件后,吸入聚六亚甲基胍(PHMG)的呼吸毒性被广泛研究,而其免疫毒性的研究尚不全面。
目的探究吸入PHMG消毒剂气溶胶对小鼠主要免疫器官及免疫细胞的影响。
方法将30只6~8周雄性C57BL/6J小鼠随机分成对照组、低剂量组(0.1 mg·m−3 PHMG)和高剂量组(1.0 mg·m−3 PHMG)3组,每组10只。采用口鼻动式吸入染毒方式,每天吸入4 h,每周5 d,连续4周。染毒结束后,采集小鼠眼内眦静脉血,用动物血液细胞分析仪测定小鼠外周血液学指标,而后颈椎脱臼法处死小鼠,分离肺、胸腺、脾脏和股骨,对肺、胸腺、脾脏称重并计算脏器系数,将胸腺、脾脏以及骨髓制备成单细胞悬液,用流式细胞仪检测其淋巴细胞的分型及比例。
结果染毒第7天起,高剂量组小鼠体重低于对照组小鼠体重(
P <0.01);染毒结束时,与对照组小鼠体重相比,高剂量组小鼠体重减少了15.74%(P <0.01)。低剂量组和高剂量组肺脏系数均高于对照组(P <0.01),高剂量组小鼠胸腺系数低于对照组(P <0.05),脾脏系数无明显变化(P >0.05)。高剂量组小鼠外周血中白细胞数量[(1.49±0.22)×109·L−1]、淋巴细胞数量[(0.96±0.36)×109·L−1]及其比例[(63.13±14.96)%]均低于对照组[(2.69±0.25)×109·L−1、(2.33±0.28)×109·L−1、(86.23±3.40)%](P <0.01),而高剂量组小鼠外周血中红细胞数量[(12.32±0.46)×1012·L−1]、血红蛋白数量[(175.25±4.65)g·L−1]和血细胞比容[(53.55±0.70)%]均高于对照组[(11.11±0.37)×1012·L−1、(160.67±4.04)g·L−1、(45.10±9.75)%](P <0.05)。与对照组比较,高剂量组小鼠胸腺中CD4+ CD8+双阳性T细胞比例降低(P <0.05),CD4+ T细胞和CD8+ T细胞比例升高(P <0.05),CD8+、CD4+ CD8+、CD4+、CD4- CD8-细胞数量均降低(P <0.05),脾脏中CD4+ T细胞比例升高(P <0.05),骨髓中T细胞、CD4+ T细胞和CD8+ T细胞比例及数量均升高(P <0.05)。结论吸入PHMG可使小鼠胸腺萎缩,扰乱T淋巴细胞发育进程,导致骨髓、外周血和脾脏中免疫细胞数量失衡,表明吸入PHMG可诱导机体免疫紊乱。
Abstract:BackgroundThe respiratory toxicity of inhaled polyhexamethylene guanidine (PHMG) has been extensively studied since the humidifier disinfectant incident. However, the impacts of inhalation of PHMG on the immune system are not comprehensively studied yet.
ObjectiveTo explore the effects of inhalation of PHMG disinfectant aerosol on major immune organs and immune cells in mice.
MethodsThirty male C57BL/6J mice (6-8 weeks old) were randomly divided into three groups: control, low-dose (0.1 mg·m−3 PHMG), and high-dose (1.0 mg·m−3 PHMG), with ten mice in each group. The mice were administered by oral-nasal inhalation of PHMG aerosol for 4 h per day, 5 d per week for 4 weeks consecutively. After designed treatment, venous blood was collected from the inner canthus of the eyes of mice and peripheral hematological indicators were measured with a blood analyzer. Then the mice were sacrificed by cervical dislocation and the lung, thymus, spleen, and femur were isolated. Lung, thymus, and spleen were weighed and organ coefficients were calculated, and single cell suspensions of thymus, spleen, and bone marrow were prepared to analyze lymphocytes phenotypes and proportions by flow cytometry.
ResultsThe body weight of mice in the high-dose group was lower than that of mice in the control group (
P <0.01) from the 7th day of inhalation, and decreased by 15.74% compared with that of mice in the control group at the end of inhalation (P <0.01). The lung coefficients of both the low-dose and high-dose groups were higher than that of the control group (P <0.01), the thymus coefficient of mice in the high-dose group was lower than that of the control group (P <0.05), but the spleen coefficient did not change significantly (P >0.05). Leukocyte count [(1.49±0.22)×109·L−1], lymphocyte count [(0.96±0.36)×109·L−1] and its proportion [(63.13±14.96)%] in the peripheral blood of mice in the high-dose group were lower than those in the control group [(2.69±0.25)×109·L−1, (2.33±0.28)×109·L−1, and (86.23±3.40)%, respectively] (P <0.01), whereas red blood cell count [(12.32±0.46)×1012·L−1], hemoglobin count [(175.25±4.65) g·L−1], and hematocrit [(53.55±0.70)%] in the peripheral blood of mice in the high-dose group were higher than those in the control group [(11.11±0.37)×1012·L−1, (160.67±4.04) g·L−1, and (45.10±9.75)%, respectively] (P <0.05). Compared with the control group, the proportion of CD4+ CD8+ double-positive T cells decreased (P <0.05), the proportions of CD4+ T cells and CD8+ T cells increased (P <0.05), and the amounts of CD8+, CD4+ CD8+, CD4+, and CD4- CD8- cells decreased (P <0.05) in the thymus of mice of the high-dose group, the proportion of CD4+ T cells in the spleen of the high-dose group increased (P <0.05), the proportions and amounts of T cells, CD4+ T cells, and CD8+ T cells in the bone marrow of the high-dose group increased (P <0.05).ConclusionInhalation of PHMG may cause thymic atrophy, disrupt T-lymphocyte development, and lead to an imbalance in the number of immune cells in the bone marrow, peripheral blood, and spleen, suggesting that inhalation of PHMG induces immune dysfunction.
-
Keywords:
- polyhexamethylene guanidine /
- disinfectant /
- inhalation toxicity /
- immunotoxicity /
- thymic atrophy
-
聚六亚甲基胍(polyhexamethylene guanidine, PHMG)是一种杀菌谱广、水溶性好及无腐蚀性的单胍类阳离子消毒剂,被广泛应用于空气消毒、环境和普通物体表面消毒、瓜果蔬菜消毒、餐饮具消毒以及医疗卫生消毒[1–3]。2011年4月,韩国疾病预防控制机构首次报告了吸入加湿器消毒剂致不典型肺损伤的公共卫生事件,这起环境事故的起因源于对加湿器消毒剂不全面的毒性评估,而PHMG是加湿器消毒剂的主要成分之一;毒理学研究发现大鼠经鼻吸入1.6 mg·m−3 PHMG气溶胶,每天6 h,每周5 d,连续4周,其肺部出现炎症和纤维化[4–5],上述研究证实了PHMG的吸入毒性。在国内,PHMG有潜在吸入风险,如被允许用于空气消毒、喷雾产品、职业人群暴露及人为误用等[1]。由于接触途径和主要呼吸道症状,大多数研究都侧重于吸入PHMG对呼吸系统的影响并取得重要进展[6–8],而忽视了PHMG可能会影响肺外器官并诱发毒性效应[9],病例研究显示吸入PHMG可损伤人体呼吸、消化、循环和免疫等多个系统[1,4]。
免疫系统是机体执行免疫应答和发挥免疫功能的系统,对维持人体健康具有重要作用。已有研究显示,小鼠气管滴注0.9 mg·kg−1 PHMG后,胸腺发生萎缩,并且其胸腺细胞数量减少、T细胞分型异常及与T细胞发育相关的基因水平表达降低[10];另一项研究显示,小鼠气管滴注低剂量的PHMG 4周后,气道呈现炎症和高反应性,并且与辅助性T淋巴细胞17(T helper 17, Th17)介导的炎症反应相关的基因表达水平发生变化[11];体外研究发现,PHMG可诱导小鼠RAW264.7巨噬细胞产生活性氧并通过激活核因子-κB(nuclear factor kappa-B, NF-κB)信号通路促进炎症因子白介素(interleukin, IL)-1β、IL-6和IL-8的释放[12]。上述研究均揭示吸入PHMG可以产生免疫毒性。然而,目前关于吸入PHMG的免疫毒性研究仍不全面,且国内尚无吸入PHMG的免疫毒性报道。
因此,本研究拟以C57BL/6J小鼠为研究对象,采用口鼻动式吸入染毒方式,探究吸入PHMG气溶胶对小鼠胸腺、脾脏脏器系数的影响,及对胸腺、脾脏、骨髓和外周血中淋巴细胞数量的影响,为国内PHMG消毒剂提供更多的吸入毒性基础数据,为规范PHMG的安全使用范围以预防意外事故的发生提供科学依据。
1. 对象与方法
1.1 实验动物
30只6~8周SPF级雄性C57BL/6J小鼠购自浙江维通利华实验动物技术有限公司,生产许可证号:SCXK(浙)2019-0001。小鼠饲养于上海市疾病预防控制中心屏障环境中,实验动物使用许可证号:SYXK(沪)2023-0046,温度22~25 ℃,相对湿度50%~60%,12 h/12 h昼夜更替模拟自然光照,自由饮水摄食。动物实验通过上海市疾病预防控制中心实验动物伦理审查委员会批准(伦理审批号:20220009)
1.2 主要试剂
PHMG(上海高聚,中国),STROMATOLYSER-4DL白细胞分类溶血剂(Sysmex,日本),小牛血清(Gibco,美国),抗小鼠CD16/32抗体、抗小鼠CD3-异硫氰酸荧光素(fluorescein isothiocyanate, FITC)、抗小鼠CD4-别藻蓝素(allophycocyanin, APC)、抗小鼠CD8a-太平洋蓝(pacific blue, PB)、抗小鼠CD19-藻红素(phycoerythrin, PE)(Biolegend,美国)。
1.3 主要仪器
XT-2000i动物血液细胞分析仪(Sysmex,日本)、低温高速平板离心机(Eppendorf,德国)、CytoFlex流式细胞仪(Beckman,美国)。
1.4 动物分组与实验方法
1.4.1 动物分组与处理
将30小鼠随机分成对照组、低剂量组和高剂量组(0.0、0.1、1.0 mg·m−3),每组10只。染毒剂量设定根据韩国加湿器消毒剂实际使用时,Park等[13]预测的室内PHMG暴露质量浓度(浓度)0.945 mg·m−3,结合课题组前期研究,分别将1.0、0.1 mg·m−3作为高、低剂量,对照组予吸相同流量的纯水气溶胶。采用口鼻动式吸入染毒方式,每天吸入4 h,每周5 d,连续4周。用空气采样泵采集暴露舱内气溶胶,采样流速为1.5 L·min−1,采样体积为30 L,用5 mL纯水作为吸收液,而后参照GB/T 26367—2020《胍类消毒剂卫生要求》使用化学比色法检测舱内染毒浓度,每天3次,每周5 d,连续4周。
1.4.2 小鼠体重和脏器系数
染毒开始后,每周称取小鼠体重2次,在解剖当天记录其终体重。小鼠眼内眦静脉采血后,将小鼠颈椎脱臼处死,称量分离的肺、胸腺和脾脏,根据脏器系数=(脏器质量/小鼠体重)×100%计算各脏器系数。
1.4.3 小鼠外周血液学指标测定
小鼠眼内眦静脉采血,而后取全血置于乙二胺四乙酸二钾(EDTA dipotassium salt, EDTA-K2)抗凝管中,充分混匀后,用动物血液细胞分析仪测定小鼠外周血液学指标。
1.4.4 小鼠胸腺、脾脏、骨髓淋巴细胞分型测定
小鼠胸腺、脾脏、骨髓经研磨、过滤、离心弃上清后,于胸腺中加1 mL含体积分数5%(后同)小牛血清的磷酸盐缓冲液制备成单细胞悬液备用,于脾脏、骨髓中分别加入1 mL红细胞裂解液混匀,室温静置340 s,而后加10 mL含5%小牛血清的磷酸盐缓冲液终止裂解,离心弃上清后,于脾脏、骨髓中分别加入4、1 mL含5%小牛血清的磷酸盐缓冲液制备成单细胞悬液备用。分别取胸腺、脾脏、骨髓单细胞悬液200 μL铺于96孔板中,离心弃上清后,于每孔分别加入50 μL抗小鼠CD16/32抗体(1∶
1000 稀释),冰上孵育20 min,离心弃上清后,于胸腺中加入50 μL抗小鼠CD4-APC(1∶400稀释)和抗小鼠CD8a-PB(1∶400稀释)混合液、于脾脏和骨髓中分别加入50 μL抗小鼠CD3-FITC(1∶400稀释)、抗小鼠CD4-APC、抗小鼠CD8a-PB和抗小鼠CD19-PE(1∶400稀释)混合液,冰上避光孵育30 min,离心弃上清后,用含5%小牛血清的磷酸盐缓冲液洗2遍,再用1%多聚甲醛溶液固定,最后于流式细胞仪上机检测,使用FlowJo10.7.2软件进行分析。1.4.5 小鼠胸腺组织病理学检测
将小鼠胸腺置于4%多聚甲醛溶液中固定,经脱水、透明、浸蜡、包埋和切片步骤制备成厚度为4 μm的石蜡切片,而后经过脱蜡、水化、染色、脱水、透明和封片步骤完成苏木精-伊红(hematoxylin-eosin staining, HE)染色,最后于镜下观察并拍照。
1.5 数据处理和统计分析
采用SPSS25.0软件进行统计分析,计量数据用平均值±标准差表示。数据满足正态和方差齐,多组间比较采用ANOVA分析,多个实验组与对照组间两两比较采用LSD-t检验;数据满足正态但方差不齐,多组间比较采用Welch检验,多个实验组与对照组间两两比较采用Dunnett检验;数据不满足正态则用Kruskal-Wallis检验进行分析。α=0.05表示差异有统计学意义。
2. 结果
2.1 PHMG染毒浓度分析
低剂量组、高剂量组预期染毒浓度为0.1、1.0 mg·m−3,实际染毒浓度的平均数及标准差分别为(0.130±0.017)、(1.010±0.080)mg·m−3。
2.2 吸入PHMG气溶胶对小鼠体重的影响
如图1所示,染毒开始前,各组小鼠体重差异无统计学意义(P>0.05);染毒第7天起,高剂量组小鼠体重低于对照组小鼠体重,差异有统计学意义(P<0.01);染毒结束时,与对照组小鼠体重比较,高剂量组小鼠体重减少了15.74%(P<0.01)。
2.3 吸入PHMG气溶胶对小鼠脏器系数的影响
如表1所示,与对照组比较,低剂量组和高剂量组肺脏系数均升高(P<0.01),高剂量组小鼠胸腺系数降低(P<0.05),脾脏系数无明显变化(P>0.05)。
表 1 吸入PHMG消毒剂气溶胶对小鼠脏器系数的影响Table 1. Effects of PHMG disinfectant aerosol inhalation on organ coefficients in mice单位(Unit):% 脏器系数
(Organ coefficient)对照组
(Control group)低剂量组
(Low-dose group)高剂量组
(High-dose group)肺脏系数(Lung coefficient) 0.67±0.07 0.81±0.07** 1.81±0.32** 脾脏系数(Spleen coefficient) 0.20±0.01 0.21±0.02 0.18±0.03 胸腺系数(Thymus coefficient) 0.16±0.03 0.18±0.01 0.09±0.04* [注] 与对照组比较,*:P<0.05,**:P<0.01。[Note] Compared with the control group, *: P<0.05, **: P<0.01. 2.4 吸入PHMG气溶胶对小鼠外周血液学指标的影响
如表2所示,与对照组比较,高剂量组小鼠外周血中白细胞、淋巴细胞及其比例降低,差异有统计学意义(P<0.01),而外周血中红细胞、血红蛋白和血细胞比容升高,差异有统计学意义(P<0.05)。
表 2 吸入PHMG消毒剂气溶胶对小鼠外周血中血液学指标的影响Table 2. Effects of PHMG disinfectant aerosol inhalation on peripheral hematological indicators in mice血液学指标
(Hematological
indicator)对照组
(Control
group)低剂量组
(Low-dose
group)高剂量组
(High-dose
group)白细胞数量(White blood cell
count)/(109·L−1)2.69±0.25 1.98±0.71 1.49±0.22** 淋巴细胞数量(Lymphocyte
count)/(109·L−1)2.33±0.28 1.72±0.61 0.96±0.36** 淋巴细胞比例
(Lymphocyte proportion)/%86.23±3.40 86.73±0.64 63.13±14.96** 红细胞数量(Red blood cell
count)/(1012·L−1)11.11±0.37 11.24±0.15 12.32±0.46* 血红蛋白(Hemoglobin)/(g·L−1) 160.67±4.04 162.75±1.89 175.25±4.65* 血细胞比容(Hematocrit)/% 45.10±9.75 50.23±0.85 53.55±0.70* [注] 与对照组比较,*:P<0.05,**:P<0.01。[Note] Compared with the control group, *: P<0.05, **: P<0.01. 2.5 吸入PHMG气溶胶对小鼠胸腺、脾脏、骨髓淋巴细胞比例的影响
2.5.1 吸入PHMG气溶胶对小鼠胸腺淋巴细胞比例的影响
如图2所示,与对照组比较,高剂量组小鼠胸腺中CD4+ CD8+比例降低(P<0.05),而CD4+和CD8+比例升高(P<0.05),高剂量组小鼠胸腺中CD8+、CD4+ CD8+、CD4+、CD4- CD8-细胞数量均降低(P<0.05)。
图 2 吸入PHMG消毒剂气溶胶对小鼠胸腺淋巴细胞的影响A:胸腺中T淋巴细胞分型流式图;B:胸腺中T淋巴细胞分型比例;C:胸腺中T淋巴细胞分型数量;*:与对照组比较,P<0.05。Figure 2. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in thymus of miceA: Representative flow cytometry plots of T lymphocytes in thymus; B: Proportion of T lymphocyte types in thymus; C: Quantity of T lymphocyte types in thymus; *: Compared with the control group, P<0.05.2.5.2 吸入PHMG气溶胶对小鼠脾脏淋巴细胞比例的影响
如图3所示,与对照组比较,高剂量组小鼠脾脏中CD4+ T细胞比例升高(P<0.05),高剂量组小鼠脾脏中B、T、CD4+ T、CD8+ T细胞数量变化无统计学意义(P>0.05)。
图 3 吸入PHMG消毒剂气溶胶对小鼠脾脏淋巴细胞的影响A:脾脏中淋巴细胞流式图;B:脾脏中淋巴细胞比例;C:脾脏中淋巴细胞数量;*:与对照组比较,P<0.05。Figure 3. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in spleen of miceA: Representative flow cytometry plots of lymphocytes in spleen; B: Proportion of lymphocytes in spleen; C: Quantity of lymphocytes in spleen; *: Compared with the control group, P<0.05.2.5.3 吸入PHMG气溶胶对小鼠骨髓淋巴细胞比例的影响
如图4所示,与对照组比较,高剂量组小鼠骨髓中T细胞比例及数量均升高,差异有统计学意义(P<0.05),表现为CD4+ T细胞、CD8+ T细胞比例及数量均升高(P<0.05)。
图 4 吸入PHMG消毒剂气溶胶对小鼠骨髓淋巴细胞的影响A:骨髓中淋巴细胞流式图;B:骨髓中淋巴细胞比例;C骨髓中淋巴细胞数量。与对照组比较,*:P<0.05,**:P<0.01。Figure 4. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in bone marrow of miceA: Representative flow cytometry plots of lymphocytes in bone marrow; B: Proportion of lymphocytes in bone marrow; C: Quantity of lymphocytes in bone marrow; Compared with the control group, *: P<0.05, **: P<0.01.2.6 吸入PHMG气溶胶对小鼠胸腺组织的影响
HE染色显示,高剂量组小鼠胸腺萎缩,表现为体积缩小,皮髓界限模糊或消失,皮质变薄,皮质和髓质部淋巴细胞明显减少(图5)。
3. 讨论
韩国加湿器消毒剂事件揭示了吸入PHMG气溶胶对人体呼吸系统及其他系统均有损伤作用[14]。免疫系统对外源性化学物的刺激比较敏感,而关于吸入PHMG气溶胶对免疫系统影响的研究相对较少,故本研究通过模拟人体实际暴露方式给予小鼠动式吸入染毒评估吸入PHMG的免疫毒性。根据经济合作与发展组织(Organization For Economic Cooperation And Development, OECD)发布的28 d亚急性吸入毒性试验指导原则,对于液体气溶胶而言,实际染毒浓度与目标染毒浓度的偏差不应超过20%。在本次研究中,高、低剂量组PHMG气溶胶染毒浓度与目标染毒浓度的偏差分别为1%和30%,与人体实际吸入PHMG气溶胶浓度相当的高剂量组符合此类试验要求,低剂量组的PHMG浓度偏差虽然超过20%,但对于本次研究而言,相对于有现实意义的高剂量组,低剂量组实际染毒浓度依然可以反映PHMG气溶胶在较低剂量水平下是否会影响机体免疫系统。
本研究发现高剂量组小鼠吸入PHMG气溶胶后体重明显降低,Kim等[15]研究中给予小鼠气管滴注1.2 mg·kg−1 PHMG后也出现体重降低现象,Song等[10]在研究中发现小鼠体重降低幅度随吸入PHMG剂量升高而增加,呈现剂量-反应关系,推测可能是因为吸入PHMG后小鼠活动减少,导致进食减少,从而引起小鼠体重降低。本研究中小鼠肺脏脏器系数随PHMG剂量升高而增加,可能是由于PHMG在肺部的不断蓄积以及进而引起的肺部损伤造成[16–17]。吸入PHMG气溶胶对小鼠脾脏脏器系数无明显影响,但降低小鼠胸腺系数,引起小鼠胸腺萎缩,提示胸腺对PHMG吸入暴露造成的损伤更加敏感。
为进一步探究吸入PHMG气溶胶对免疫细胞的影响,本研究检测了外周血、胸腺、脾脏和骨髓中细胞数量的变化。高剂量PHMG组小鼠外周血中红细胞、血红蛋白和血细胞比容均升高,Sung等[18]研究中大鼠气管滴注0.9 mg·kg−1 PHMG后,其血红蛋白和血细胞比容亦升高,红细胞呈升高趋势,分析原因可能是因为吸入PHMG造成的呼吸异常导致供血不足,进而引起红细胞、血红蛋白和血细胞比容代偿性增加[4]。吸入PHMG气溶胶后小鼠外周血中白细胞减少,表现为白细胞组成成分之一淋巴细胞数量及其比例均降低,结合本研究中吸入PHMG引起了小鼠胸腺萎缩现象,提示可能是因为小鼠胸腺萎缩导致淋巴细胞发育异常,进而影响了血液中淋巴细胞的数量[19]。
淋巴祖细胞自骨髓通过血管迁移至胸腺后经历CD4- CD8-双阴性T细胞、CD4+ CD8+双阳性T细胞及阳性选择、阴性选择后发育为成熟的CD4+单阳性T细胞和CD8+单阳性T细胞,随后转运至各免疫器官发挥免疫功能[20]。本研究中,高剂量PHMG组小鼠胸腺中CD4+ CD8+双阳性T细胞比例明显降低,而CD4+单阳性T细胞和CD8+单阳性T细胞比例升高,这与Song等[10]研究结果一致,且胸腺中CD8+、CD4+ CD8+、CD4+、CD4- CD8-细胞数量均降低,提示吸入PHMG后扰乱了T细胞在小鼠胸腺中的发育进程,进而影响T细胞介导的细胞免疫功能。除胸腺外,机体另一个中枢免疫器官骨髓中,研究发现PHMG升高了T细胞、CD4+ T细胞和CD8+ T细胞比例和数量,同时在机体重要的免疫器官脾脏中,其CD4+ T细胞亦升高,这可能是因为胸腺中CD4+ T细胞和CD8+ T细胞比例升高,所以当T细胞自胸腺被输送至其他免疫器官时,其CD4+ T细胞和CD8+ T细胞比例仍相对较高。本研究发现吸入PHMG对B细胞比例及数量尚无明显影响,但仍需结合功能学实验进一步评估吸入PHMG是否会影响机体的体液免疫功能。
综上,吸入PHMG可使小鼠胸腺萎缩,扰乱T淋巴细胞发育进程,导致骨髓、外周血和脾脏中免疫细胞数量失衡,研究结果表明吸入PHMG气溶胶具有免疫毒性作用。
-
图 2 吸入PHMG消毒剂气溶胶对小鼠胸腺淋巴细胞的影响
A:胸腺中T淋巴细胞分型流式图;B:胸腺中T淋巴细胞分型比例;C:胸腺中T淋巴细胞分型数量;*:与对照组比较,P<0.05。
Figure 2. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in thymus of mice
A: Representative flow cytometry plots of T lymphocytes in thymus; B: Proportion of T lymphocyte types in thymus; C: Quantity of T lymphocyte types in thymus; *: Compared with the control group, P<0.05.
图 3 吸入PHMG消毒剂气溶胶对小鼠脾脏淋巴细胞的影响
A:脾脏中淋巴细胞流式图;B:脾脏中淋巴细胞比例;C:脾脏中淋巴细胞数量;*:与对照组比较,P<0.05。
Figure 3. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in spleen of mice
A: Representative flow cytometry plots of lymphocytes in spleen; B: Proportion of lymphocytes in spleen; C: Quantity of lymphocytes in spleen; *: Compared with the control group, P<0.05.
图 4 吸入PHMG消毒剂气溶胶对小鼠骨髓淋巴细胞的影响
A:骨髓中淋巴细胞流式图;B:骨髓中淋巴细胞比例;C骨髓中淋巴细胞数量。与对照组比较,*:P<0.05,**:P<0.01。
Figure 4. Effects of PHMG disinfectant aerosol inhalation on the lymphocytes in bone marrow of mice
A: Representative flow cytometry plots of lymphocytes in bone marrow; B: Proportion of lymphocytes in bone marrow; C: Quantity of lymphocytes in bone marrow; Compared with the control group, *: P<0.05, **: P<0.01.
表 1 吸入PHMG消毒剂气溶胶对小鼠脏器系数的影响
Table 1 Effects of PHMG disinfectant aerosol inhalation on organ coefficients in mice
单位(Unit):% 脏器系数
(Organ coefficient)对照组
(Control group)低剂量组
(Low-dose group)高剂量组
(High-dose group)肺脏系数(Lung coefficient) 0.67±0.07 0.81±0.07** 1.81±0.32** 脾脏系数(Spleen coefficient) 0.20±0.01 0.21±0.02 0.18±0.03 胸腺系数(Thymus coefficient) 0.16±0.03 0.18±0.01 0.09±0.04* [注] 与对照组比较,*:P<0.05,**:P<0.01。[Note] Compared with the control group, *: P<0.05, **: P<0.01. 表 2 吸入PHMG消毒剂气溶胶对小鼠外周血中血液学指标的影响
Table 2 Effects of PHMG disinfectant aerosol inhalation on peripheral hematological indicators in mice
血液学指标
(Hematological
indicator)对照组
(Control
group)低剂量组
(Low-dose
group)高剂量组
(High-dose
group)白细胞数量(White blood cell
count)/(109·L−1)2.69±0.25 1.98±0.71 1.49±0.22** 淋巴细胞数量(Lymphocyte
count)/(109·L−1)2.33±0.28 1.72±0.61 0.96±0.36** 淋巴细胞比例
(Lymphocyte proportion)/%86.23±3.40 86.73±0.64 63.13±14.96** 红细胞数量(Red blood cell
count)/(1012·L−1)11.11±0.37 11.24±0.15 12.32±0.46* 血红蛋白(Hemoglobin)/(g·L−1) 160.67±4.04 162.75±1.89 175.25±4.65* 血细胞比容(Hematocrit)/% 45.10±9.75 50.23±0.85 53.55±0.70* [注] 与对照组比较,*:P<0.05,**:P<0.01。[Note] Compared with the control group, *: P<0.05, **: P<0.01. -
[1] 唐敬龙, 祝肖肖, 郑玉新. 吸入胍类消毒剂致肺损伤的毒性特征及机制研究进展[J]. 中华预防医学杂志, 2020, 54(2): 209-212. doi: 10.3760/cma.j.issn.0253-9624.2020.02.018 TANG J L, ZHU X X, ZHENG Y X. Progress in respiratory toxicity of polyhexamethyleneguaidine disinfectant and mechanism exploration[J]. Chin J Prev Med, 2020, 54(2): 209-212. doi: 10.3760/cma.j.issn.0253-9624.2020.02.018
[2] 屈卫东. 关注胍类阳离子消毒剂对肺的损害[J]. 中华预防医学杂志, 2020, 54(2): 121-123. doi: 10.3760/cma.j.issn.0253-9624.2020.02.001 QU W D. Concern about lung damage caused by guanidine cationic disinfectants[J]. Chin J Prev Med, 2020, 54(2): 121-123. doi: 10.3760/cma.j.issn.0253-9624.2020.02.001
[3] 杨正丽, 洪新宇. 聚六亚甲基胍毒性研究进展[J]. 环境与职业医学, 2022, 39(1): 99-104. doi: 10.11836/JEOM21167 YANG Z L, HONG X Y. Advances on toxicity of polyhexamethyl guanidine[J]. J Environ Occup Med, 2022, 39(1): 99-104. doi: 10.11836/JEOM21167
[4] YANG H S, YANG M, KANG M, et al. Inhalation toxicity of polyhexamethylene guanidine-phosphate in rats: A 4-week inhalation exposure and 24-week recovery period study[J]. Chemosphere, 2023, 312(Pt 1): 137232.
[5] PARK S, LEE K, LEE E J, et al. Humidifier disinfectant-associated interstitial lung disease in an animal model induced by polyhexamethylene guanidine aerosol[J]. Am J Respir Crit Care Med, 2014, 190(6): 706-708. doi: 10.1164/rccm.201404-0710LE
[6] KIM J W, JEONG M H, YU H T, et al. Fibrinogen on extracellular vesicles derived from polyhexamethylene guanidine phosphate-exposed mice induces inflammatory effects via integrin β[J]. Ecotoxicol Environ Saf, 2023, 252: 114600. doi: 10.1016/j.ecoenv.2023.114600
[7] LI X, ZHANG J, DU C, et al. Polyhexamethylene guanidine aerosol triggers pulmonary fibrosis concomitant with elevated surface tension via inhibiting pulmonary surfactant[J]. J Hazard Mater, 2021, 420: 126642. doi: 10.1016/j.jhazmat.2021.126642
[8] LEE J D, KIM H Y, KANG K, et al. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats[J]. Arch Toxicol, 2020, 94(3): 887-909. doi: 10.1007/s00204-020-02657-x
[9] KIM H D, KIM H C, LEEM J H. Toxic hepatitis after exposure to humidifier disinfectant: A case series report[J]. Environ Anal Health Toxicol, 2023, 38(1): e2023002. doi: 10.5620/eaht.2023002
[10] SONG J A, PARK H J, YANG M J, et al. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy[J]. Food Chem Toxicol, 2014, 69: 267-275. doi: 10.1016/j.fct.2014.04.027
[11] SONG M K, KIM D I, LEE K. Causal relationship between humidifier disinfectant exposure and Th17-mediated airway inflammation and hyperresponsiveness[J]. Toxicology, 2021, 454: 152739. doi: 10.1016/j.tox.2021.152739
[12] KIM H R, SHIN D Y, CHUNG K H. The role of NF-κB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells[J]. Toxicol Lett, 2015, 233(2): 148-155. doi: 10.1016/j.toxlet.2015.01.005
[13] PARK D U, FRIESEN M C, ROH H S, et al. Estimating retrospective exposure of household humidifier disinfectants[J]. Indoor Air, 2015, 25(6): 631-640. doi: 10.1111/ina.12180
[14] SONG J H, AHN J, PARK M Y, et al. Health effects associated with humidifier disinfectant use: a systematic review for exploration[J]. J Korean Med Sci, 2022, 37(33): e257. doi: 10.3346/jkms.2022.37.e257
[15] KIM M S, KIM S H, JEON D, et al. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis[J]. Toxicology, 2018, 393: 185-192. doi: 10.1016/j.tox.2017.11.017
[16] SHIM H E, LEE J Y, LEE C H, et al. Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method[J]. Chemosphere, 2018, 207: 649-654. doi: 10.1016/j.chemosphere.2018.05.132
[17] SONG J, KIM W, KIM Y B, et al. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice[J]. Toxicol Appl Pharmacol, 2018, 345: 94-102. doi: 10.1016/j.taap.2018.02.013
[18] SUNG H J, JEONG S H, KANG J Y, et al. Hematotoxic effect of respiratory exposure to PHMG-p and its integrated genetic analysis[J]. Toxics, 2022, 10(11): 694. doi: 10.3390/toxics10110694
[19] BERTHAULT C, LARCHER T, HÄRTLE S, et al. Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia[J]. Vet Res, 2018, 49(1): 31. doi: 10.1186/s13567-018-0526-x
[20] LUO M, XU L, QIAN Z, et al. Infection-associated thymic atrophy[J]. Front Immunol, 2021, 12: 652538. doi: 10.3389/fimmu.2021.652538