A case-control study on gut microbiota diversity and species composition in obese/overweight children aged 2-6 years in Shanghai
-
摘要:背景
多项研究表明肠道微生物菌群组成上的变化与肥胖关系密切,但儿童研究较少,且研究结果受到种族、地理位置等因素的影响。
目的在上海市2~6岁儿童人群中进行肠道微生物菌群多样性分析,观察肥胖/超重与正常体重儿童之间肠道微生物菌群分布特点及物种差异,探讨肥胖/超重与肠道菌群多样性的关联。
方法采集上海市74例2~6岁儿童粪便样本,其中肥胖/超重18人,男性6人,女性12人(男女比例为1∶2);正常体重56人,男性18人,女性38人(男女比例约为1∶2)。提取粪便样品中细菌的16S rDNA,进行PCR扩增、文库构建和高通量测序。采用Naive Bayes算法对扩增子序列变异(ASV)的代表序列及丰度信息进行物种分类学分析(门、纲、目、科、属、种)、群落多样性(Sobs指数、Shannon指数、Shannoneven指数、Coverage指数、PD指数、主坐标分析)分析等。运用Wilcoxon秩和检验、
P 值多重检验校正、相似性分析检验等对两组进行差异分析,获得儿童肠道菌群组成分布特点及物种差异信息。结果共计完成74个粪便样本的测序并对测序结果进行质控和过滤,获得优化序列4905306条,得到1860个ASVs。对ASVs进行多样性数据分析,得到8个分类学水平的物种注释结果889个。α多样性分析表明肥胖/超重儿童群落丰富度(Sobs指数)、多样性(Shannon指数)、均匀度(Shannoneven指数)、谱系多样性(PD指数)均比正常体重儿童有所上升,但是两组无统计学差异(
P >0.05)。β多样性分析显示两组微生物物种组成组间差异不大,未见明显聚类。从门、目、科、属四种分类学水平上对74例样本进行物种组成分析,结果显示两组肠道菌群都存在一致的核心菌群结构,但是菌群组成有差异。两组间菌群组成差异表现在目、科、属这三个分类学水平上,其中厚壁菌门下的丹毒丝菌目丹毒荚膜菌科的丹毒丝菌属UCG003、链型杆菌属在OB_OW组中显著富集,且对肥胖/超重这一表型差异贡献较大[线性判别分析值(LDA)=3.72,P <0.01;LDA=3.29,P <0.05]。变形菌门下的肠杆菌目肠杆菌科未分类肠杆菌属在体重正常组中显著富集,且对体重正常这一表型差异贡献较大(LDA=3.93,P <0.05)。结论上海2~6岁肥胖/超重儿童肠道菌群的丰富度和多样性增高,但与正常体重儿童相比无差异。肥胖/超重组和正常体重组存在肠道菌群组成差异。
-
关键词:
- 肠道 /
- 微生物菌群 /
- 儿童 /
- 超重肥胖 /
- 16S rDNA测序
Abstract:BackgroundMultiple studies have shown a close relationship between changes in gut microbiota composition and obesity, and research results are influenced by factors such as race and geographical location, but there are few studies on children.
ObjectiveTo analyze the diversity of gut microbiota related to obesity in a population of 2-6 years old, observe the distribution characteristics and species differences of gut microbiota between obese/overweight and normal weight groups, and explore the association betweenobese/overweight and gut microbiota diversity.
MethodsFecal samples were collected from 74 children aged 2-6 years in Shanghai, including 18 obese/overweight individuals, 6 males and 12 females (male to female ratio of 1∶2), and 56 normal weight individuals, 18 males and 38 females (male to female ratio is nearly 1∶2). The 16S rDNA was extracted from bacteria in fecal samples, followed by PCR amplification, cDNA construction, and high-throughput sequencing. Naive Bayes algorithm was used to perform taxonomic analysis (phylum, class, order, family, genus, species) and community diversity analysis (Sobs index, Shannon index, Shannoneven index, Coverage index, PD index, and principal co-ordinates analysis) on representative sequences and abundance of amplicon sequence variants (ASV). Wilcoxon rank sum test,
P -value multiple test correction, and analysis of similarities were used to test differences between the two groups to obtain information on the distribution characteristics and species differences of intestinal microbiota in children.ResultsSeventy-four fecal samples were sequenced, and the sequencing results were subjected to quality control and filtering. A total of 4905306 optimized sequences were obtained, resulting in 1860 ASVs. The diversity data analysis of ASVs generated 889 species annotation results at 8 taxonomic levels. The alpha diversity analysis showed that the richness (Sobs index), diversity (Shannon index), evenness (Shannoneven index), and phylogenetic diversity (PD index) of fecal community of the obese/overweight children were increased compared to those of the normal weight children, but there were no statistical differences between the two groups (
P >0.05). The beta diversity analysis showed that there was little difference in the composition of microbial species between the two groups, and no significant clustering separation was observed. The results of species composition analysis at phylum, order, family, and genus levels of 74 samples showed a consistent core microbiota structure in the two groups of gut microbiota, but there were differences in microbiota composition. The differences in microbial community composition between the two groups were manifested at the taxonomic levels of order, family, and genus, among which phylum Firmicutes, order Erysipelotrichales, family Erysipelatocyclostridiaceae, genusErysipelotrichaceae_ UCG-003 and genusCatenibacterium were significantly enriched in the obese/overweight group and contributed significantly to the phenotypic difference of obese/overweight [linear discriminant analysis (LDA)=3.72,P <0.01; LDA=3.29,P <0.05). Phylum Proteobacteria, order Enterobacterales, family Enterobacteriaceae, genusunclassified was significantly enriched in the normal weight group and contributed significantly to the phenotypic difference of normal body weight (LDA=3.93,P <0.05).ConclusionThe richness and diversity of gut microbiota in obese/overweight children aged 2-6 years in Shanghai are increased, but there is no difference compared to normal weight children. There is a difference in the composition of gut microbiota between the obese/overweight group and the normal weight group.
-
Keywords:
- gut /
- microbiome /
- child /
- overweight and obesity /
- 16S rDNA sequencing
-
《中国居民营养与慢性病状况报告(2020年)》显示,中国居民超重肥胖的形势严峻,成年居民超重率和肥胖率分别为34.3%和16.4%,儿童青少年超重肥胖率接近两成[1]。肠道菌群被称为“第二基因组”,在人体与环境相互作用中扮演重要角色[2]。研究发现肠道菌群是肥胖的重要外因之一[3],通过改变体内肠道菌群,可以改变机体内环境,从而改善肥胖状态[4–6],且学龄前儿童肥胖和肠道菌群的变化显著相关[7–8]。因此微生物多样性与人群肥胖的关系也越来越受到关注[8–11]。本次研究对2~6岁儿童进行肥胖相关的肠道微生物菌群多样性和物种组成分析,观察肥胖/超重与正常体重儿童之间肠道微生物菌群分布特点及物种差异,探讨肥胖儿童肠道微生物菌群的多样性和物种组成变化与肥胖的关联,为今后肥胖干预提供依据。
1. 对象与方法
1.1 研究对象
随机抽取上海市闵行区2~6岁儿童共计74例(女性50人,男性24人)。按研究对象的身高、体重以及体重指数(body mass index, BMI)分为肥胖/超重(obese/overweight, OB_OW)组和正常体重(normal weight, N)组两组,其中肥胖/超重18人(男性6人,女性12人,男女比例为1∶2),正常体重56人(男性18人,女性38人,男女比例约为1∶2),研究对象平均年龄(3.4±1.1)岁。儿童根据不同的年龄段,肥胖/超重的判断标准不一。依照上海市学龄前儿童生长发育执行标准,0~5岁儿童参照5岁以下儿童消瘦、超重、肥胖诊断标准(2006年世界卫生组织标准);>5岁且≤6岁儿童参照0~19岁的BMI(2007年世界卫生组织标准)。
本次研究对象皆为学龄前儿童,饮食结构较为单一。无胃肠道疾病,取样前3个月内未使用过抗生素及益生菌。问卷调查和粪便样本采集时均签署知情同意书,样本采集时间段尽可能保持一致。研究对象2岁前均母乳喂养,肠道菌群定植关键时期的喂养情况一致。至调查日前均无摄入含糖饮料的习惯。本次研究已通过上海市疾病预防控制中心伦理审查委员会的审查评估(编号2019-20)。
1.2 DNA提取和检测
采用E.Z.N.A.® Soil DNA试剂盒(Omega Bio-Tek,美国)进行冻干粪便样本总DNA提取。用NanoDrop2000(Thermo Fisher,美国)检测DNA纯度和浓度。采用1%琼脂糖凝胶电泳检验DNA完整性,电压5 V·cm−1,时间为20 min。所有样本DNA纯度、浓度和完整性均符合实验要求。
1.3 细菌16S rDNA引物合成与扩增
设计细菌16S V3~V4区特异引物序列如下。上游引物:ACTCCTACGGGAGGCAGCAG,下游引物:GGACTACHVGGGTWTCTAAT。
根据FastPfuPCR试剂盒(TransGen,中国)要求加入试剂,形成聚合酶链式反应(polymerase chain reaction, PCR)体系。扩增步骤为预变性95 ℃、3 min,紧接着30个循环反应,温度分别是95 ℃变性30 s,55 ℃退火30 s,72 ℃延伸45s,最后72 ℃ 10 min延伸后4 ℃保存。将PCR产物鉴定、纯化、定量及均一化以后进行文库构建和测序。经电泳鉴定,PCR产物目的条带大小正确,浓度合适,且质控通过,可用于后续的实验检测。
1.4 构建文库
使用NEXTFLEX Rapid DNA-Seq试剂盒(Bioo Scientific,美国)进行建库。首先将第一次PCR产物作为模板进行二次PCR扩增,目的就是将illumina测序平台所需的接头−测序引物添加到目的片段的两端,磁珠回收PCR产物得到最终的文库。
1.5 生物信息学分析
利用Illumina公司的Miseq PE300平台进行测序。将测序得到的双端测序序列(paired-end reads,PE reads)进行样本拆分后,首先根据测序质量对PE reads进行质控和过滤,同时根据PE reads之间的重叠区(overlap)关系进行拼接,获得质控拼接之后的优化数据。然后使用序列降噪方法处理优化数据,获得扩增子序列变异(amplicon sequence variant, ASV)代表序列和丰度信息。采用生信云平台提供的Naive Bayes算法对ASV代表序列进行分类学分析,基于ASV代表序列及丰度信息,进行群落α多样性分析、β多样性分析和后续物种门、纲、目、科、属、种等分类学分析等,软件使用R语言(version 3.3.1)的boot 1.3.18和stats 3.3.1包。
α多样性主要用于研究特定区域或某一样本中的群落多样性,可通过对一系列α多样性指数进行评估,获得环境群落中物种的丰富度、多样性等信息。本研究选取反映群落丰富度的Sobs指数、反映群落多样性的Shannon指数、反映群落均匀度的Shannoneven指数、反映群落覆盖度的Coverage指数、反映群落谱系多样性的PD指数。Sobs指数代表能观测到的物种数目,其值越大代表物种越丰富。Shannon指数越大代表样本群落多样性越高,其余类似。β多样性作为群落结构研究的根基,常用来比较不同生态系统之间,也就是样品间的差异,它反映生物种类因环境所造成异质性。本次研究运用主坐标分析(principal co-ordinates analysis, PCoA)来研究OB_OW组和N组的组内和组间样本群落组成的相似性或差异性。
利用SPSS Statistic 22软件根据研究对象的性别和年龄进行分层分析,显示微生物多样性差异不显著,后续分析标化数据以去除年龄、性别等混杂因素。α多样性指数组间差异比较使用Wilcoxon秩和检验,P值多重检验校正。β多样性指数组间差异首先基于所选样本PCoA分析进行作图,然后运用相似性分析(analysis of similarities, ANOSIM)检验组间差异是否显著大于组内差异。β多样性分析样本间物种丰度分布的差异程度采用非加权UniFrac距离算法,基于各个物种分类单元(如ASV、属等)的系统进化树,通过计算进化树各物种的系统发育进化关系,从而计算样本间距离,但没有计入不同环境样本的序列相对丰度。
利用样本在不同测序深度时的α多样性指数绘制稀疏曲线,结果显示随着测序数量的增加,Sob指数趋于平坦,说明测序数量合理,更多的测序数量只会产生少量的新物种(ASV),Shannon指数在较少的测序数量时即趋于平坦,说明测序数量足够大,可以反映样本中绝大多数的微生物多样性信息(见补充材料图S1)。
肠道微生物菌群物种组成及差异分析采用Wilcoxon秩和检验。为了发现两组或多组样本中最能解释组间差异的物种特征,以及这些特征对组间差异的影响程度,本研究还进行了线性判别分析(linear discriminant analysis, LDA)。该分析利用线性判别分析效应(linear discriminant analysis effect size, LEfSe)(Galaxy Version 1.0)软件,先运用非参数Kruskal-Wallis秩和检验检测不同组间的物种丰度差异,获得显著差异物种,再使用(未配对)Wilcoxon秩和检验分析上一步的差异物种在不同组间子分组中的差异一致性,最后运用LDA值估计这些差异物种对组间区别的影响大小。通过LDA分析(即线性回归分析)获得的LDA分值,LDA分值越大,代表物种丰度对差异效果影响越大。
2. 结果
2.1 测序结果
对74个粪便样本的测序结果进行质控和过滤,获得4905306条优化序列,得到1860个ASVs。进行多样性数据分析,得到物种注释结果:域1个、界1个、门13个、纲19个、目50个、科94个、属247个、种464个。
2.2 肠道微生物菌群多样性分析
2.2.1 α多样性分析
α多样性分析结果显示,OB_OW组群落丰富度、多样性、均匀度等均有所增高,但是与N组相比,二者无统计学差异(P>0.05,表1)。
表 1 肥胖/超重组和正常体重组α多样性指数组间差异(均数±标准差)Table 1. α diversity index differences between the obese/overweight group and the normal weight group (mean±SD)指数(Index) 肥胖/超重组(OB_OW group) 正常体重组(N group) P Sobs 111.94±32.30 105.54±38.63 0.48 Shannon 3.29±0.30 3.09±0.69 0.38 Shannoneven 0.70±0.05 0.67±0.11 0.44 Coverage 0.9998±0.0002 0.9998±0.0001 0.61 PD 11.78±2.77 11.10±2.92 0.40 2.2.2 β多样性分析
通过统计分析显示非加权UniFrac距离在门水平上R=−0.0555,P=0.797(图1A),而在属水平上R=−0.0196,P=0.577(图1B),两组微生物物种组成组间差异不大,未见明显聚类,差异检验不具有统计学意义。
图 1 肥胖/超重组和正常体重组肠道菌群物种门水平(A)和属水平(B)PCoA分析图绿色标识为肥胖/超重(OB_OW)组,红色标识为正常体重(N)组。Figure 1. PCoA of gut microbiota at phylum level (A) and genus level (B) for the obese/overweight group and the normal weight groupGreen represents the obese/overweight (OB_OW) group, and red represents the normal weight (N) group.2.3 肥胖/超重和正常体重儿童肠道微生物菌群物种组成及差异分析
2.3.1 物种组成门水平分析
在门水平上(图2A),群落菌群丰度数据显示两组皆以厚壁菌门、放线菌门、拟杆菌门、变形菌门这四种为优势菌群。这四种菌群在OB_OW组和N组两组间占比不同,但无组间差异。OB_OW组中的厚壁菌门、拟杆菌门、变形菌门相对丰度较N组高。N组中放线菌门相对丰度较OB_OW组高。
图 2 肥胖/超重组和正常体重组肠道微生物群落比较柱状图A~D分别为门、目、科、属水平,白色为肥胖/超重(OB_OW)组,橙色为正常体重(N)组。左图表示不同分类下物种丰度的百分比,右图表示不同分类下物种丰度的组分间差异(95%CI),*:0.01<P≤0.05,**:0.001<P≤0.01。Figure 2. Bar charts of gut microbial community comparison between the obese/overweight group and the normal weight groupA-D represent phylum, order, family, and genus levels, respectively. White represents the obese/overweight (OB_OW) group, and orange represents the normal weight (N) group. The left figure represents the proportion of a species at different classification levels. The right figure shows the difference between components of species abundance at different taxonomic levels (95%CI), *: 0.01<P≤0.05, **: 0.001<P≤0.01.2.3.2 物种组成目水平分析
在目水平上(图2B),OB_OW组的优势菌群分别为毛螺菌目(33.8%)、双歧杆菌目(16.7%)、颤螺菌目(10.1%),N组的优势菌群分别为毛螺菌目(35.3%)、双歧杆菌目(22.8%)、颤螺菌目(10.9%)。其中丹毒丝菌目在OB_OW组(2.9%)中明显高于N组(2.0%),具有统计学意义(P<0.01)。
2.3.3 物种组成科水平分析
在科水平上(图2C),OB_OW组的优势菌群分别为毛螺菌科(33.8%)、双歧杆菌科(16.7%)、瘤胃菌科(8.1%),N组的优势菌群分别为毛螺菌科(35.3%)、双歧杆菌科(22.8%)、瘤胃菌科(9.5%)。其中丹毒荚膜菌科在OB_OW组(2.2%)中明显高于N组(0.8%),具有统计学意义(P<0.01),丹毒丝菌科在OB_OW组(0.7%)中明显低于N组(1.3%),差异具有统计学意义(P<0.05)。
2.3.4 物种组成属水平分析
在属水平上(图2D),OB_OW组和N组的优势菌群均为双歧杆菌属(分别为16.7%和22.8%)、布劳特氏菌属(分别为15.5%和15.6%)、拟杆菌属(分别为6.3%和4.7%)。其中厚壁菌门下的丹毒丝菌目丹毒荚膜菌科的丹毒丝菌属UCG003、链型杆菌属在OB_OW组中明显高于N组,具有统计学意义(丹毒丝菌属UCG003,P<0.01;链型杆菌属,P<0.05),变形菌门下的肠杆菌目肠杆菌科未分类肠杆菌属在OB_OW组中明显低于N组,差异具有统计学意义(P<0.05)。
2.3.5 物种差异LEfSe分析
LEfSe分析如图3显示,在OB_OW组中属于厚壁菌门下的丹毒丝菌目丹毒荚膜菌科丹毒丝菌属UCG003的LDA数值最高(LDA=3.72),且组间具有统计学差异(P<0.01),其次LDA数值较高的是链型杆菌属(LDA=3.29),它也属于厚壁菌门下的丹毒丝菌目丹毒荚膜菌科,且组间具有统计学差异(P<0.05)。这两种菌属在OB_OW组LDA数值较高以及在组间的统计学差异说明它们对OB_OW这一表型的影响比较大,并且在前面物种差异分析中也是这两种菌属在OB_OW组显著富集。在N组中变形菌门下的肠杆菌目肠杆菌科未分类肠杆菌属LDA数值较高(LDA=3.93),组间具有统计学差异(P<0.05)。这种菌属在N组LDA数值较高以及在组间的统计学差异说明它们对N这一表型的影响比较大,并且在前面物种差异分析中也是这种菌属在N组显著富集。
图 3 超重肥胖组和正常体重组肠道微生物群落LDA判别柱形图绿色为肥胖/超重(OB_OW)组,红色为正常体重(N)组。*:0.01<P≤0.05,**:0.001<P≤0.01。Figure 3. LDA discrimination bar charts of gut microbial community of the obese/overweight group and the normal weight groupGreen represents the obese/overweight (OB_ OW) group, and red represents the normal weight (N) group. *: 0.01<P≤0.05, **: 0.001<P≤0.01.3. 讨论
超重和肥胖已然在全球流行,在我国儿童、青少年肥胖发病率逐年增长,已成为重要的公共卫生问题[1,12–13]。多项研究表明肠道微生物菌群组成上的变化与肥胖关系密切[4,6,14–15]。肠道微生物组成变化会影响宿主从饮食中获取能量和能量储存[16],导致体重的变化,因此肠道微生物菌群是一个重要的环境因素,对其进行干预,可以减少肥胖和脂肪炎症[17–18]。尽管肠道微生物组成会影响肥胖和能量摄入,但研究多集中在动物实验和成人,儿童研究较少,研究结果因受到种族、地理位置等的影响会有不一致[5]。
本次研究采集上海2~6岁儿童粪便样本做16S rDNA扩增子高通量测序,群落α多样性分析显示OB_OW组比N组肠道微生物菌群群落丰富度、多样性高,但是统计学无明显差异。这与国内外一些关于超重肥胖儿童的肠道菌群研究结果相似[19–24]。
不同分类学水平下物种组成分析显示OB_OW组和N组存在差异。作为肠道菌群的优势门类,厚壁菌门和拟杆菌门对疾病表型的变异贡献最大[25],因此门水平上的研究比较常见。有研究表明,75%的肥胖富集基因来自放线菌门,另外25%的来自厚壁菌门[6],与瘦基因富集相关的基因有42%来自拟杆菌门[14]。本次研究门水平OB_OW组中的厚壁菌门、拟杆菌门、变形菌门相对丰度较N组高,提示这三种菌门内有与肥胖发生发展相关的菌群占优势,与一些儿童肠道微生态研究一致[7,8,19]。进一步分析目、科、属水平下两组的差异菌群,发现厚壁菌门下的丹毒丝菌目丹毒荚膜菌科的丹毒丝菌属UCG003、链型杆菌属在OB_OW组中显著富集,丰度较N组显著增高,且对OB_OW表型的贡献较大。变形菌门下的肠杆菌目肠杆菌科未分类肠杆菌属在N组较OB_OW组显著增高,且对N表型贡献较大。多项肠道微生物菌群结构变化与肥胖关系的研究中都提到了这些菌群。有一项研究正常体重、肥胖和肥胖代谢综合征的项目在27名儿童中开展,研究发现丹毒丝菌属UCG003、链型杆菌属在肥胖代谢综合征组中的丰度显著增高[22]。多个文献中有证据表明丹毒荚膜菌科在宿主生理学中可能发挥作用,与宿主肠道炎症、脂质代谢和葡萄糖代谢受损有关[26–29]。在肥胖、代谢综合征和高胆固醇血症的背景下,该家族的丰度增加与宿主血脂异常有关[30–32]。最新关于丹毒丝菌属UCG003的研究表明,该菌属在肥胖孕妇中丰度较高[33],该菌属显著促进谷氨酰胺降解、乳酸生成和果聚糖降解[34]。香港大学一项最新研究表明,血清乳酸水平在肥胖、高血压和胰岛素抵抗受试者中升高,并与空腹血糖和糖化血红蛋白浓度以及2型糖尿病相关[35]。由此可见丹毒丝菌属UCG003在肥胖和这些代谢通路间有着紧密联系。一项喂食“西方”饮食的人源化小鼠的研究表明,与喂食低脂/植物饮食的小鼠相比,链型杆菌属在这些动物的粪便样本中的代表性增加[36]。六个研究项目的荟萃分析显示在属水平上,肥胖成年人与非肥胖成年人相比,链型杆菌属相对比例较高[37]。还有研究表明这类肠道菌群的代谢产物能够抑制辅助性T细胞17的分化,与肠道炎症反应有关[38],而肥胖患者的特征之一正是肠道出现低度炎症,肠道炎症会增加肠道通透性,从而损害能量平衡和增加食物摄入[39]。结合本研究结果,提示这两种菌属异常富集与OB_OW存在紧密联系,可能是一个肥胖潜在的生物标志物。对于未分类肠杆菌属在肥胖中的研究不多见,该菌属主要与微生物发酵有关,应用于多种生物发酵工程[40–42],与血浆丁酸和戊酸浓度正相关[43]。本研究发现未分类肠杆菌属在N组中显著富集,可能与该菌属的生物代谢作用相关,它是如何发挥瘦基因生物学作用的,还需进一步研究证实。
综上所述,OB_OW的发生与肠道微生物菌群失衡密切相关,其机制可能是菌群异常富集导致肠道炎症反应进而影响了脂质代谢和葡萄糖代谢,或者是通过自身代谢增了一些酸类代谢产物,这也为今后机制和干预研究提供了一个方向。本次研究观察到OB_OW存在不同分类学水平下的肠道微生物菌群物种组成变化,为下阶段菌群宏基因组功能分析提供了研究基础。然而本次研究存在样本量不足,病例数较少的问题,下阶段将会扩大样本量以补充并验证本次研究的结论。
-
图 1 肥胖/超重组和正常体重组肠道菌群物种门水平(A)和属水平(B)PCoA分析图
绿色标识为肥胖/超重(OB_OW)组,红色标识为正常体重(N)组。
Figure 1. PCoA of gut microbiota at phylum level (A) and genus level (B) for the obese/overweight group and the normal weight group
Green represents the obese/overweight (OB_OW) group, and red represents the normal weight (N) group.
图 2 肥胖/超重组和正常体重组肠道微生物群落比较柱状图
A~D分别为门、目、科、属水平,白色为肥胖/超重(OB_OW)组,橙色为正常体重(N)组。左图表示不同分类下物种丰度的百分比,右图表示不同分类下物种丰度的组分间差异(95%CI),*:0.01<P≤0.05,**:0.001<P≤0.01。
Figure 2. Bar charts of gut microbial community comparison between the obese/overweight group and the normal weight group
A-D represent phylum, order, family, and genus levels, respectively. White represents the obese/overweight (OB_OW) group, and orange represents the normal weight (N) group. The left figure represents the proportion of a species at different classification levels. The right figure shows the difference between components of species abundance at different taxonomic levels (95%CI), *: 0.01<P≤0.05, **: 0.001<P≤0.01.
图 3 超重肥胖组和正常体重组肠道微生物群落LDA判别柱形图
绿色为肥胖/超重(OB_OW)组,红色为正常体重(N)组。*:0.01<P≤0.05,**:0.001<P≤0.01。
Figure 3. LDA discrimination bar charts of gut microbial community of the obese/overweight group and the normal weight group
Green represents the obese/overweight (OB_ OW) group, and red represents the normal weight (N) group. *: 0.01<P≤0.05, **: 0.001<P≤0.01.
表 1 肥胖/超重组和正常体重组α多样性指数组间差异(均数±标准差)
Table 1 α diversity index differences between the obese/overweight group and the normal weight group (mean±SD)
指数(Index) 肥胖/超重组(OB_OW group) 正常体重组(N group) P Sobs 111.94±32.30 105.54±38.63 0.48 Shannon 3.29±0.30 3.09±0.69 0.38 Shannoneven 0.70±0.05 0.67±0.11 0.44 Coverage 0.9998±0.0002 0.9998±0.0001 0.61 PD 11.78±2.77 11.10±2.92 0.40 -
[1] 国家卫生健康委疾病预防控制局. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2022. The National Bureau of Disease Control and Prevention. Report on the nutrition and chronic diseases status of Chinese residents 2020[M]. Beijing: People’s Medical Publishing House, 2022.
[2] GILL S R, POP M, DEBOY R T, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359. doi: 10.1126/science.1124234
[3] ZENG Q, YANG Z, WANG F, et al. Association between metabolic status and gut microbiome in obese populations[J]. Microb Genom, 2021, 7(8): 000639.
[4] LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023. doi: 10.1038/4441022a
[5] TREMAROLI V, BÄCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249. doi: 10.1038/nature11552
[6] TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484. doi: 10.1038/nature07540
[7] 毛顺峰, 冯俊杰, 王琼. 3~6岁肥胖儿童肠道微生态状况和影响因素分析[J]. 中国妇幼保健, 2022, 37(16): 2981-2984. MAO S F, FENG J J, WANG Q. Analysis of gut microbiota status and influencing factors in obese children aged 3-6 years old[J]. Matern Child Health Care China, 2022, 37(16): 2981-2984.
[8] MA T, WU Z Y, LIN J, et al. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years[J]. Front Cell Infect Microbiol, 2023, 13: 1102650. doi: 10.3389/fcimb.2023.1102650
[9] HANEISHI Y, FURUYA Y, HASEGAWA M, et al. Polyunsaturated fatty acids-rich dietary lipid prevents high fat diet-induced obesity in mice[J]. Sci Rep, 2023, 13(1): 5556. doi: 10.1038/s41598-023-32851-7
[10] THU M S, CHOTIROSNIRAMIT K, NOPSOPON T, et al. Human gut, breast, and oral microbiome in breast cancer: a systematic review and meta-analysis[J]. Front Oncol, 2023, 13: 1144021. doi: 10.3389/fonc.2023.1144021
[11] 龚彤, 陈国芳, 狄红杰, 等. 短期极低热量限制对超重/肥胖2型糖尿病患者肠道菌群的影响[J]. 中华内分泌代谢杂志, 2022, 38(2): 93-99. doi: 10.3760/cma.j.cn311282-20210201-00068 GONG T, CHEN G F, DI H J, et al. Effects of short-term very low-calorie restriction on gut microbiota in obese/overweight patients with type 2 diabetes[J]. Chin J Endocrinol Metab, 2022, 38(2): 93-99. doi: 10.3760/cma.j.cn311282-20210201-00068
[12] 刘飞, 张君仪, 徐虹. 青少年肥胖现状及早期影响因素的研究进展[J]. 现代预防医学, 2018, 45(3): 420-422. LIU F, ZHANG J Y, XU H. Research progress on obesity status and early influencing factors in adolescents[J]. Mod Prev Med, 2018, 45(3): 420-422.
[13] 原晨晨. 全球儿童超重肥胖的流行现状和影响因素[J]. 卫生研究, 2020, 49(3): 506-511. YUAN C C. The epidemic status and influencing factors of overweight and obesity in children worldwide[J]. J Hyg Res, 2020, 49(3): 506-511.
[14] KASAI C, SUGIMOTO K, MORITANI I, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing[J]. BMC Gastroenterol, 2015, 15: 100. doi: 10.1186/s12876-015-0330-2
[15] LIU R, HONG J, XU X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nat Med, 2017, 23(7): 859-868. doi: 10.1038/nm.4358
[16] BÄCKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci USA, 2004, 101(44): 15718-15723. doi: 10.1073/pnas.0407076101
[17] CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481. doi: 10.2337/db07-1403
[18] CHOU C J, MEMBREZ M, BLANCHER F. Gut decontamination with norfloxacin and ampicillin enhances insulin sensitivity in mice[J]. Nestle Nutr Workshop Ser Pediatr Program, 2008, 62: 127-140. doi: 10.1159/000146256
[19] 吴亚, 方圆圆, 陈彦辉, 等. 基于16SrDNA测序的肥胖儿童肠道菌群变化分析[J]. 中国儿童保健杂志, 2018, 26(12): 1297-1300. doi: 10.11852/zgetbjzz2018-1011 WU Y, FANG Y Y, CHEN Y H, et al. Study of the intestinal microbial diversity in obese children by illumina amplicon sequencing of 16SrDNA Tag[J]. Chin J Child Health Care, 2018, 26(12): 1297-1300. doi: 10.11852/zgetbjzz2018-1011
[20] 蒋露芳, 王莹莹, 彭慧, 等. 学龄儿童肥胖与肠道菌群多样性及菌属丰度的关联研究[J]. 中华流行病学杂志, 2022, 43(2): 260-268. JIANG L F, WANG Y Y, PENG H, et al. Association between obesity with the diversity and genus of gut microbiota in school-aged children[J]. Chin J Epidemiol, 2022, 43(2): 260-268.
[21] KARLSSON C L, ONNERFÄLT J, XU J, et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity (Silver Spring), 2012, 20(11): 2257-2261. doi: 10.1038/oby.2012.110
[22] GALLARDO-BECERRA L, CORNEJO-GRANADOS F, GARCÍA-LÓPEZ R, et al. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children[J]. Microb Cell Fact, 2020, 19(1): 61. doi: 10.1186/s12934-020-01319-y
[23] ZENG Q, LI D, HE Y, et al. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities[J]. Sci Rep, 2019, 9(1): 13424. doi: 10.1038/s41598-019-49462-w
[24] MÉNDEZ-SALAZAR E O, ORTIZ-LÓPEZ M G, DE LOS ÁNGELES GRANADOS-SILVESTRE M, et al. Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in mexican undernourished and obese children[J]. Front Microbiol, 2018, 9: 2494. doi: 10.3389/fmicb.2018.02494
[25] MORENO-GALLEGO J L, CHOU S P, DI RIENZI S C, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins[J]. Cell Host Microbe, 2019, 25(2): 261-272.e5. doi: 10.1016/j.chom.2019.01.019
[26] KAAKOUSH N O. Insights into the role of Erysipelotrichaceae in the human host[J]. Front Cell Infect Microbiol, 2015, 5: 84.
[27] KWOK A H Y, LI Y, JIANG J, et al. Complete genome assembly and characterization of an outbreak strain of the causative agent of swine erysipelas-Erysipelothrix rhusiopathiae SY1027[J]. BMC Microbiol, 2014, 14: 176. doi: 10.1186/1471-2180-14-176
[28] DINH D M, VOLPE G E, DUFFALO C, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection[J]. J Infect Dis, 2015, 211(1): 19-27. doi: 10.1093/infdis/jiu409
[29] LIPPERT K, KEDENKO L, ANTONIELLI L, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults[J]. Benef Microbes, 2017, 8(4): 545-556. doi: 10.3920/BM2016.0184
[30] SPENCER M D, HAMP T J, REID R W, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140(3): 976-986. doi: 10.1053/j.gastro.2010.11.049
[31] ZHANG H, DIBAISE J K, ZUCCOLO A, et al. Human gut microbiota in obesity and after gastric bypass[J]. Proc Natl Acad Sci USA, 2009, 106(7): 2365-2370. doi: 10.1073/pnas.0812600106
[32] ZHANG C, ZHANG M, WANG S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice[J]. ISME J, 2010, 4(2): 232-241. doi: 10.1038/ismej.2009.112
[33] VAVRECKOVA M, GALANOVA N, KOSTOVCIK M, et al. Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women[J]. Front Endocrinol (Lausanne), 2022, 13: 970825. doi: 10.3389/fendo.2022.970825
[34] ATZENI A, BASTIAANSSEN T F S, CRYAN J F, et al. Taxonomic and functional fecal microbiota signatures associated with insulin resistance in non-diabetic subjects with obese/overweight within the frame of the PREDIMED-plus study[J]. Front Endocrinol (Lausanne), 2022, 13: 804455. doi: 10.3389/fendo.2022.804455
[35] FENG T, ZHAO X, GU P, et al. Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2[J]. Nat Commun, 2022, 13(1): 5208. doi: 10.1038/s41467-022-32871-3
[36] TURNBAUGH P J, RIDAURA V K, FAITH J J, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice[J]. Sci Transl Med, 2009, 1(6): 6ra14.
[37] PINART M, DÖTSCH A, SCHLICHT K, et al. Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis[J]. Nutrients, 2021, 14(1): 12. doi: 10.3390/nu14010012
[38] PAIK D, YAO L, ZHANG Y, et al. Human gut bacteria produce TH17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912. doi: 10.1038/s41586-022-04480-z
[39] BRUCE-KELLER A J, SALBAUM J M, LUO M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity[J]. Biol Psychiatry, 2015, 77(7): 607-615. doi: 10.1016/j.biopsych.2014.07.012
[40] LI J, XU R, ZONG L, et al. Dynamic evolution and correlation between metabolites and microorganisms during manufacturing process and storage of Fu brick tea[J]. Metabolites, 2021, 11(10): 703. doi: 10.3390/metabo11100703
[41] CHEN Y, CHEN T, YIN J. Impact of N-butyryl-L-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: insights into volatile fatty acids production and microbial community[J]. Bioresour Technol, 2023, 368: 128354. doi: 10.1016/j.biortech.2022.128354
[42] ZHAO M, ZHANG H, PAN G, et al. Effect of exogenous microorganisms on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage[J]. Front Microbiol, 2022, 13: 1052837. doi: 10.3389/fmicb.2022.1052837
[43] XU D, FENG M, CHU Y, et al. The prebiotic effects of oats on blood lipids, gut microbiota, and short-chain fatty acids in mildly hypercholesterolemic subjects compared with rice: a randomized, controlled trial[J]. Front Immunol, 2021, 12: 787797. doi: 10.3389/fimmu.2021.787797
-
-
PDF格式
23293 补充材料 202KB
-
-
-