大气PM2.5长期暴露对人群糖尿病影响及饮食因素调节作用的研究

王金霞, 石运昊, 王栋帅, 董学昊, 张翰卿, 周思杰, 赵燚, 张毓洪, 张亚娟

王金霞, 石运昊, 王栋帅, 董学昊, 张翰卿, 周思杰, 赵燚, 张毓洪, 张亚娟. 大气PM2.5长期暴露对人群糖尿病影响及饮食因素调节作用的研究[J]. 环境与职业医学, 2024, 41(3): 259-266. DOI: 10.11836/JEOM23194
引用本文: 王金霞, 石运昊, 王栋帅, 董学昊, 张翰卿, 周思杰, 赵燚, 张毓洪, 张亚娟. 大气PM2.5长期暴露对人群糖尿病影响及饮食因素调节作用的研究[J]. 环境与职业医学, 2024, 41(3): 259-266. DOI: 10.11836/JEOM23194
WANG Jinxia, SHI Yunhao, WANG Dongshuai, DONG Xuehao, ZHANG Hanqing, ZHOU Sijie, ZHAO Yi, ZHANG Yuhong, ZHANG Yajuan. Effects of long-term exposure to ambient fine particulate matter on diabetes mellitus and the moderating effects of diet[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 259-266. DOI: 10.11836/JEOM23194
Citation: WANG Jinxia, SHI Yunhao, WANG Dongshuai, DONG Xuehao, ZHANG Hanqing, ZHOU Sijie, ZHAO Yi, ZHANG Yuhong, ZHANG Yajuan. Effects of long-term exposure to ambient fine particulate matter on diabetes mellitus and the moderating effects of diet[J]. Journal of Environmental and Occupational Medicine, 2024, 41(3): 259-266. DOI: 10.11836/JEOM23194

大气PM2.5长期暴露对人群糖尿病影响及饮食因素调节作用的研究

基金项目: 宁夏回族自治区重点研发计划项目(2021BEG02026)
详细信息
    作者简介:

    王金霞(1998—),女,硕士生;E-mail:wjx17339851702@163.com

    通讯作者:

    张亚娟,E-mail:zhyj830515@126.com

  • 中图分类号: R12

Effects of long-term exposure to ambient fine particulate matter on diabetes mellitus and the moderating effects of diet

Funds: This study was funded.
More Information
  • 摘要:
    背景

    大气细颗粒物(PM2.5)长期暴露会增加糖尿病患病风险,健康的饮食可以有效地控制空腹血糖值,然而,目前尚不清楚饮食因素对大气PM2.5暴露相关的糖尿病风险是否具有调节作用。

    目的

    探讨大气PM2.5长期暴露与宁夏农村地区人群糖尿病患病风险之间的关联,以及大气PM2.5长期暴露和饮食情况对糖尿病影响的交互作用。

    方法

    研究对象来源于中国西北区域自然人群队列研究-宁夏队列的基线调查资料,排除缺失协变量信息者,共纳入研究对象13917人。本研究以2014—2018年大气PM2.5年均浓度作为长期暴露水平,采用logistic回归模型和多重线性回归模型分析大气PM2.5长期暴露与糖尿病和空腹血糖值之间的关联;按照研究对象的食用蔬菜频率、食用水果频率和咸口味进行分层,分析其对大气PM2.5暴露相关的糖尿病风险的调节作用。

    结果

    13917名研究对象平均年龄为(56.8±10.0)岁,糖尿病患病率为9.8%。2014—2018年大气PM2.5年均浓度为(38.10±4.67)μg·m−3。大气PM2.5浓度每升高1 μg·m−3,糖尿病患病风险的OR为1.018(95%CI:1.005~1.032),空腹血糖值升高0.011(95%CI:0.004~0.017)mmol·L−1。与食用蔬菜频率 < 1 次·周−3 相比,食用蔬菜1~3 次·周−1 和≥4 次·周−1 的人群患糖尿病的风险分别降低 27.1%(OR=0.729,95%CI:0.594~0.893)和16.8%(OR=0.832, 95%CI:0.715~0.971);与食用水果频率 < 1 次·周−1 相比,食用水果频率 1~3 次·周−1 和≥4 次·周−1 的人群患糖尿病的风险分别降低16.4%(OR=0.836,95%CI:0.702~0.998)和 18.2%(OR=0.818,95%CI:0.700~0.959)食用蔬菜频率1~3次·周−1的人群空腹血糖值降低0.202(95%CI:−0.304~−0.101) mmol·L−1;尚未发现咸口味对糖尿病和空腹血糖值的影响。饮食因素及PM2.5浓度的分层分析显示,与PM2.5低浓度-高蔬菜摄入频率组相比,PM2.5低浓度-低蔬菜摄入频率、PM2.5高浓度-低蔬菜摄入频率组的糖尿病患病风险升高,OR值分别为3.987(95%CI:2.943~5.371)和1.433(95%CI:1.143~1.796)。与PM2.5低浓度-高水果摄入频率人群相比,PM2.5高浓度-低水果摄入频率人群的糖尿病患病风险升高50.1%(OR=1.501,95%CI:1.171~1.926)。尚未发现咸口味与PM2.5对糖尿病影响的交互作用。

    结论

    大气PM2.5长期暴露与宁夏农村地区人群糖尿病患病风险增加和空腹血糖值升高有关;增加每周食用蔬菜、水果的频率对糖尿病患病风险具有一定的保护作用,同时对大气PM2.5长期暴露相关的糖尿病患病风险和空腹血糖值具有调节作用。

     

    Abstract:
    Background

    Long-term exposure to ambient fine particulate matter (PM2.5) may increase the risk of diabetes, and a healthy diet can effectively control fasting blood glucose levels. However, it is unclear whether dietary factors have a moderating effect on the risk of diabetes associated with atmospheric PM2.5 exposure.

    Objective

    To investigate the association between long-term exposure to PM2.5 and diabetes in rural areas of Ningxia, and potential interaction of long-term exposure to atmospheric PM2.5 and diet on diabetes.

    Methods

    The study subjects were selected from the baseline survey data of the China Northwest Cohort-Ningxia (CNC-NX) , a natural population cohort. A total of 13917 subjects were included, excluding participants with missing covariate information. We utilized the annual average ambient PM2.5 concentration from 2014 to 2018 as the long-term exposure level. Logistic regression and multiple linear regression were employed to analyze the associations of long-term atmospheric PM2.5 exposure with diabetes and fasting blood glucose levels. Stratification by frequency of vegetable consumption, frequency of fruit consumption, and salty taste was used to examine moderating effects on the diabetes risk associated with atmospheric PM2.5 exposure.

    Results

    The mean age of the 13917 subjects was (56.8±10.0) years, and the prevalence of diabetes was 9.8%. Between 2014 and 2018, the average annual concentration of PM2.5 was (38.10±4.67) μg·m−3. The risk (OR) of diabetes was 1.018 (95%CI: 1.005, 1.032) and the fasting blood glucose was increased by 0.011 (95%CI: 0.004, 0.017) mmol·L−1 for each 1 μg·m−3 increase in PM2.5 concentration. Compared to those who consumed vegetables < 1 time per week, individuals who consume vegetables 1-3 times per week and ≥4 times per week had a reduced risk of developing diabetes by 27.1% (OR=0.729, 95%CI: 0.594, 0.893) and 16.8% (OR=0.832, 95%CI: 0.715, 0.971) respectively. Similarly, when compared to those who consumed fruits <1 time per week, individuals who consumed fruits 1-3 times per week and ≥4 times per week exhibited a reduced risk of diabetes by 16.4% (OR=0.836, 95%CI: 0.702, 0.998) and 18.2% (OR=0.818, 95%CI: 0.700, 0.959) respectively. Fasting blood glucose decreased by 0.202 (95%CI: -0.304, -0.101) mmol·L−1 in participants who ate vegetables 1-3 times per week. The effect of salty taste on diabetes and fasting blood glucose was not significant. The results of stratified analysis by dietary factors and PM2.5 concentration showed that the risks of diabetes were increased in the low PM2.5 pollution-low vegetable intake frequency group and the high PM2.5 pollution-low vegetable intake frequency group compared with the low PM2.5 pollution-high vegetable intake frequency group, with OR values of 3.987 (95%CI: 2.943, 5.371) and 1.433 (95%CI: 1.143, 1.796) respectively. The risk of diabetes was 50.1% higher in participants with high PM2.5 pollution and low fruit intake frequency than in participants with low PM2.5 pollution and high fruit intake frequency (OR=1.501, 95%CI: 1.171, 1.926). No interaction was found between salty taste and PM2.5 on diabetes.

    Conclusion

    Long-term exposure to ambient PM2.5 is associated with an increased fasting blood glucose and an elevated risk of diabetes in rural Ningxia population. Increasing the frequency of weekly consumption of vegetables or fruits may have a certain protective effect against diabetes occurrence, as well as a moderating effect on diabetes and fasting blood glucose levels associated with long-term exposure to atmospheric PM2.5.

     

  • 糖尿病是一组以血糖水平增高为特征的代谢性疾病,主要是由机体胰岛素分泌缺陷或胰岛素功能缺陷所引起。中国的糖尿病患病率预估于2025年升至12.5%[1],这极大地加重了糖尿病的疾病负担。近年来的研究表明,除了遗传及生活方式外,大气中的细颗粒物(fine particulate matter, PM2.5)暴露与糖尿病患病率和发病率之间存在关联[26]。根据2019年全球疾病负担研究结果,环境颗粒物污染是导致糖尿病的伤残调整生命年归因比例最高的三个因素之一[7],其中有约五分之一的2型糖尿病负担的可归因于PM2.5的暴露[8]

    饮食因素是2型糖尿病重要的影响因素之一,蔬菜水果中富含大量膳食纤维、多酚和抗氧化剂等物质,可以增加胰岛素敏感性[9]、血糖波动幅度和糖代谢异常的发生风险[1011]。因此,健康的饮食习惯可能对2型糖尿病具有潜在的保护作用。近期研究发现,饮食情况可以改变大气污染和健康相关结局之间的关系,例如植物性食品可以减少由空气污染引起的慢性炎症性疾病中的氧化应激和炎症[12],健康的饮食模式可降低空气污染与全因死亡率的关联[13]。但目前缺乏饮食因素对大气污染和2型糖尿病之间联系的调节作用研究。因此,本研究基于中国西北区域自然人群队列研究-宁夏自然人群队列(China Northwest Cohort-Ningxia, CNC-NX)中的横断面数据,评估中国西北地区大气PM2.5长期暴露与糖尿病和空腹血糖的关系,以及蔬菜、水果摄入量及咸口味对大气PM2.5和糖尿病关联的调节作用,为糖尿病的防治和空气污染的治理提供科学依据。

    研究对象数据来源于CNC-NX自然人群队列中2017—2018年的基线调查数据,包括人群的一般信息(性别、地区、民族、文化程度、婚姻状况、职业、收入水平)、生活方式(吸烟、饮酒、蔬菜水果摄入、咸口味及体育锻炼)、疾病史和体格检查等相关信息。排除缺失部分协变量信息者,最终纳入研究对象13917人(详情见图1)。该项目通过宁夏医科大学伦理委员会批准(批准号:2020-689),且所有研究对象均签署知情同意书。

    图  1  研究对象纳入流程图
    Figure  1.  Flowchart of inclusion of research participants

    2型糖尿病(type 2 diabetes mellitus, T2DM)定义满足以下任一条件即可:(1)空腹血糖(fasting blood glucose, FBG)≥7.0 mmol·L−1;(2)自我报告,当参与者对“您是否被乡镇卫生院或社区卫生服务中心或以上的医生诊断为2型糖尿病”的问题回答“是”时,被认为是2型糖尿病患者。FBG采用自动生化分析仪,采用葡萄糖氧化法测定。

    本研究PM2.5数据来自CHAP数据(https://weijing-rs.github.io/product.html)。CHAP数据中的PM2.5污染物浓度数据是Wei等[14]在2021年采用新开发的时空极端随机树(space–time extremely randomized trees, STET)模型进行构建的。该模型基于分辨率为1 km的MODIS Collection 6 MAIAC AOD产品(MCD19A2)、气象因素、地表地形数据、污染物排放和人口分布,重建生成了2000—2018年高分辨率(1 km)、高质量的中国PM2.5数据集。为了确保数据的准确性和代表性,Wei等使用两年不同污染物状况的数据来检测模型的预测能力,结果表明STET模型在估算当前PM2.5浓度(交叉验证R2=0.86~0.90)和预测历史PM2.5浓度方面[R2=0.80~0.82,均方根差为(6.10~11.26)μg·m−3]具有高度准确性。

    为了评估参与者的大气PM2.5暴露水平,采用CHAP数据中的PM2.5数据集。考虑到自2013年颁布《大气污染防治行动计划》以来,我国大中型城市的大气PM2.5浓度呈显著下降趋势[15],并且PM2.5对糖尿病的发病是一个长期慢性过程,本研究参考部分流行病学研究[16],重点关注基线调查前5年(2014—2018年)PM2.5日均浓度数据,以前5年的PM2.5年均浓度作为长期暴露水平。本研究根据每个参与者所在的乡镇的经度和纬度为其匹配PM2.52014—2018年日均浓度,最后计算每个参与者2014—2018年均浓度,以前5年的PM2.5年均浓度作为参与者长期暴露水平。

    使用结构化问卷来收集有关参与者人口统计学特征(年龄和性别)、个体特征(体重指数、文化程度和高血压)、生活行为情况(吸烟、饮酒)和饮食情况(食用蔬菜、水果频率和咸口味)。协变量分类情况为:性别(男性或女性)、体重指数(body mass index, BMI)(<18.5划分为低体重,BMI≥18.5且<24划分为正常体重,BMI≥24划分为超重或肥胖)、文化程度(初中及以下、高中或中专、大学及以上)、吸烟(分为“吸烟者”和“不吸烟者”)、饮酒(分为“饮酒者”和“不饮酒者”)、饮食情况(蔬菜和水果摄入情况根据每周食用频次可分为每周<1次、每周1~3次及每周≥4次)、咸口味(分类根据调查问卷“与朋友或同事相比,您所喜欢的口味如何”分为口味偏淡、适中、口味偏咸)、心血管疾病(cardiovascular disease, CVD)(自述患冠心病、中风、高血压和肺心病等心血管疾病)。

    计量资料呈正态分布用$\bar x $±s表示,组间比较采用t检验。计数资料利用频数和百分比描述,组间比较采用χ2检验。采用logistic回归模型评估大气PM2.5长期暴露和饮食因素(蔬菜、水果摄入频率和咸口味)与糖尿病之间的关联,多重线性模型评估大气PM2.5长期暴露和饮食因素(蔬菜、水果摄入频率和咸口味)对空腹血糖的影响。为控制相关协变量的混杂影响,分别建立4个模型,模型中纳入的混杂因素参考以往相关文献。粗模型不纳入混杂因素;模型1仅调整年龄和性别;模型2在模型1的基础上调整个体情况(BMI、文化程度、高血压病史)和生活行为情况(吸烟、饮酒);模型3在模型2基础上调整饮食情况(食用蔬菜频率、食用水果频率和咸口味)。

    将含有PM2.5年均暴露与饮食因素的乘积交互项纳入模型,采用似然比检验检验饮食因素与PM2.5之间的潜在交互作用[17]。根据GB 3095—2012《环境空气质量标准》中PM2.5年均值二级标准限值(35 μg·m−3),将PM2.5浓度≤35 μg·m−3划分为低浓度,PM2.5浓度>35 μg·m−3划分为高浓度,按照研究对象的每周蔬菜摄入频率、水果摄入频率和咸口味进行分层分析,探讨不同饮食因素分层内不同PM2.5浓度对糖尿病患病风险的影响,以评估饮食情况对PM2.5相关的糖尿病风险的调节作用。所有数据分析使用R 3.5.2完成。统计学推断均采用双侧检验,P<0.05认为具有统计学意义。

    13917名研究对象平均年龄为(56.8±10.0)岁,女性占比为60.0%,该人群的文化程度以初中及以下者(13384名)居多,占比为96.2%。在生活行为方面,不饮酒者与不吸烟者的人数较多,占比分别为94.8%和85.1%。研究对象的前5年PM2.5暴露年均浓度为(38.10±4.67)μg·m−3。其中糖尿病患者1364人,糖尿病患病率为9.8%,见表1

    表  1  调查对象的基线特征分布
    Table  1.  Baseline characteristic distributions of survey respondents
    变量
    (Variable)
    糖尿病(Diabetes)t/χ2P
    是(Yes)否(No)
    年龄/岁(Age/years)60.3±9.156.4±10.0−14.586<0.001
    性别(Gender)0.5960.440
     男(Male)559(41.0)5004(39.9)
     女(Female)805(59.0)7549(60.1)
    文化程度(Education),n(%)2.0750.354
     初中及以下
     (Junior high school
     and below)
    1304(95.6)12080(96.2)
     高中(Senior high school)49(3.6)405(3.2)
     大学及以上
     (University or above)
    11(0.8)68(0.5)
    饮酒(Drinking),n(%)0.0560.813
     否(No)1295(94.9)11894(94.7)
     是(Yes)69(5.1 )659(5.3)
    吸烟(Smoking),n(%)1.1330.287
     否(No)1175(86.1)10673(85.0 )
     是(Yes)189(13.9)1880(15.0)
    BMI/(kg·m−2),n(%)43.194<0.001
     <18.521(1.5 )238(1.9 )
     18.5~<24.0414(30.4 )4918(39.2)
     ≥24.0929(68.1)7397(58.9)
    蔬菜摄入频率/(次·周−1)
    [Frequency of vegetable
    intake/(times·week−1)],n(%)
    15.059<0.001
     <1246(18.0)1780(14.2)
     1~3192(14.1)1929(15.4)
     ≥4926(67.9 )8844(70.5)
    水果摄入频率/(次·周−1)
    [Frequency of fruit
    intake/(times·week−1)],n(%)
    7.558<0.05
     <1238(17.4 )1844(14.7)
     1~3367(26.9)3420(27.2)
     ≥4759(55.6 )7289(58.1 )
    咸口味(Salty taste),n(%)8.053<0.05
     偏淡(Light)652(47.8)5499(43.8)
     适中(Middle)554(40.6 )5452(43.4 )
     偏咸(Salty)158(11.6 )1602(12.8 )
    心血管疾病(Cardiovascular disease),n(%),n(%)274.25<0.001
     否(No)754(55.2)9544(76.0)
     是(Yes)610(44.6)3009(24.0)
    下载: 导出CSV 
    | 显示表格

    调整所有协变量后,大气PM2.5年均浓度每升高1 μg·m−3,糖尿病患病风险为OR=1.018(95%CI:1.005~1.032),空腹血糖值升高0.011(95%CI:0.004~0.017)mmol·L−1,见表2

    表  2  PM2.5每升高1 μg·m−3与糖尿病患病风险(OR)和空腹血糖(mmol·L−1)的关系
    Table  2.  Association between 1 μg·m−3 increase in PM2.5 and diabetes prevalence (OR) or fasting blood glucose (mmol·L−1)
    模型
    (Model)
    糖尿病
    (Diabetes)
    空腹血糖
    (Fasting blood glucose)
    OR(95%CI)P$ \beta $(95%CI)P
    粗模型
    (Crude model)
    1.017(1.005~1.030)<0.05 0.012(0.006~0.018)<0.001
    模型1
    (Model 1)
    1.018(1.006~1.031)<0.05 0.012(0.006~0.018)<0.001
    模型2
    (Model 2)
    1.018(1.005~1.030)<0.05 0.012(0.006~0.018)<0.001
    模型3
    (Model 3)
    1.018(1.005~1.032)<0.05 0.011(0.004~0.017)<0.05
    [注] 粗模型:未调整混杂因素;模型1:调整性别、年龄;模型2:在模型1的基础上调整个体特征(BMI、文化程度)、生活行为情况(吸烟、饮酒)和CVD疾病史;模型3:在模型2基础上调整饮食情况(蔬菜摄入频率、水果摄入频率和咸口味)。[Note] Crude model: No confounding factor; Model 1: Gender and age are introduced; Model 2: On the basis of Model 1, individual characteristics (BMI, education), life habits (smoking, drinking) and history of CVD are introduced; Model 3: Dietary conditions (frequency of vegetable consumption, frequency of fruit consumption, and salty taste) are introduced based on Model 2.
    下载: 导出CSV 
    | 显示表格

    与蔬菜摄入频率<1次·周−1相比,蔬菜摄入频率1~3次·周−1人群患糖尿病的风险降低27.1%(OR=0.729,95%CI:0.594~0.893),空腹血糖值降低0.202(95%CI:−0.304~−0.101)mmol·L−1。蔬菜摄入频率≥4 次·周−1的人群糖尿病的风险降低16.8%(OR=0.832,95%CI:0.715~0.971)。与食用水果频率<1次·周−1相比,食用水果频率1~3次·周−1、≥4次·周−1的人群患糖尿病的风险分别降低16.4%(OR=0.836,95%CI:0.702~0.998)和18.2%(OR=0.818,95%CI:0.700~0.959)。见表3

    表  3  饮食因素与糖尿病患病风险(OR)和空腹血糖值(mmol·L−1)之间的关联
    Table  3.  Associations of dietary factors with the risk of diabetes (OR) and fasting blood glucose levels (mmol·L−1)
    饮食因素(Dietary factor)糖尿病患病风险(Diabetes)空腹血糖(Fasting blood glucose)
    OR(95%CI)$ \beta $(95%CI)
    蔬菜摄入频率/(次·周−1)[Frequency of vegetable intake/(times·week−1)]
     <1
     1~30.729(0.594~0.893)**−0.202(−0.304~−0.101)***
     ≥40.832(0.715~0.971)*−0.073(−0.153~0.007)
    水果摄入频率/(次·周−1)[Frequency of fruit intake/(times·week−1)]
     <1
     1~30.836(0.702~0.998)*−0.021(−0.110~0.068)
     ≥40.818(0.700~0.959)*0.041(−0.040~0.121)
    咸口味(Salty taste)
     偏咸(Salty)
     适中(Middle)1.002(0.832~1.213)0.015(−0.073~0.093)
     偏淡(Light)1.068(0.889~1.290)0.004(−0.073~0.104)
    [注] *:P<0.05;**:P<0.01;***:P<0.00;以每周蔬菜摄入频率<1、每周水果摄入频率<1和偏咸口味作为参考组;模型中调整了性别、年龄、BMI、文化程度、吸烟、饮酒和CVD疾病史。[Note] *: P<0.05; **: P<0.01; ***: P<0.001; Ref.: Weekly frequency of vegetable intake <1, weekly frequency of fruit intake < 1, and salty taste; gender, age, BMI, education, smoking, drinking, and history of CVD are adjusted.
    下载: 导出CSV 
    | 显示表格

    将PM2.5分为低浓度和高浓度,并按照不同饮食因素进行分层分析,结果显示,每周蔬菜和水果摄入频率与大气PM2.5对糖尿病患病风险和空腹血糖值有显著交互作用(P交互<0.05)。与PM2.5低浓度-高蔬菜摄入频率组相比,PM2.5低浓度-低蔬菜摄入频率、PM2.5高浓度-低蔬菜摄入频率组的糖尿病患病风险升高,OR值分别为3.987(95%CI:2.943~5.371)和1.433(95%CI:1.143~1.796),空腹血糖值分别升高0.865(95%CI:0.677~1.053)、0.152(95%CI:0.053~0.256)mmol·L−1

    与PM2.5低浓度-高水果摄入频率人群相比,PM2.5高浓度-低水果摄入频率人群的糖尿病患病风险升高50.1%(OR=1.501,95%CI:1.171~1.926)。详情见图2。未观察到咸口味与大气PM2.5对糖尿病患病风险(P交互=0.706)和空腹血糖值(P交互=0.967)的交互作用。

    图  2  基于饮食因素分层分析大气PM2.5浓度每升高1 μg·m−3对糖尿病患病风险(OR)和空腹血糖值(mmol·L−1)的影响
    两个模型中均调整了性别、年龄、BMI、文化程度、吸烟、饮酒和高血压疾病史。
    Figure  2.  Effects of 1 μg·m−3 increase in atmospheric PM2.5 on diabetes risk (OR) or fasting blood glucose (mmol·L−1) stratified by dietary factors
    The models are adjusted for gender, age, BMI, education, smoking, drinking, and history of hypertension.

    表4敏感性分析结果显示,调整基线前1、2和3年PM2.5浓度作为暴露浓度,PM2.5暴露对糖尿病和空腹血糖值水平的影响没有发生变化,模型较为稳健。

    表  4  敏感性分析结果[OR(95%CI)]
    Table  4.  Sensitivity analysis results [OR(95%CI)]
    PM2.5暴露浓度
    (PM2.5 exposure concentration)
    糖尿病
    (Diabetes)
    空腹血糖
    (Fasting blood glucose)
    OR95%CI$ \beta $95%CI
    调整1年平均浓度
    (1-year average concentration)
    1.0411.022~1.061 0.0210.013~0.030
    调整2年平均浓度
    (2-year average concentration)
    1.0281.012~1.038 0.0150.007~0.022
    调整3年平均浓度
    (3-year average concentration)
    1.0171.002~1.033 0.0100.003~0.018
    [注] 模型中调整了性别、年龄、BMI、文化程度、吸烟、饮酒、CVD疾病史、蔬菜摄入频率、水果摄入频率和咸口味。[Note]All models are adjusted for gender, age, BMI, education, smoking, drinking, and history of CVD, frequency of vegetable consumption, frequency of fruit consumption, and salty taste.
    下载: 导出CSV 
    | 显示表格

    本研究基于CNC-NX队列的基线调查数据,分析大气PM2.5长期暴露对人群糖尿病影响及饮食因素调节作用,结果发现:在调整所有协变量后,PM2.5长期暴露与糖尿病患病风险和空腹血糖值之间存在正相关(P<0.05)。增加每周食用蔬菜、水果的频率对糖尿病患病风险具有一定的保护作用。饮食因素及PM2.5浓度的分层分析结果显示,与PM2.5低浓度-高蔬菜摄入频率组相比,PM2.5低浓度-低蔬菜摄入频率、PM2.5高浓度-低蔬菜摄入频率组的糖尿病患病风险升高;与PM2.5低浓度-高水果摄入频率人群相比,PM2.5高浓度-低水果摄入频率人群的糖尿病患病风险升高。

    本研究结果显示,PM2.5长期暴露与糖尿病患病风险空腹血糖值升高之间存在正相关,与大部分国内外研究结果相似,例如,Dimakakou等[18]研究结果显示,PM2.5年均浓度每升高1 μg·m−3,2型糖尿病的OR值为1.02(95%CI:1.00~1.03)。一项大型中国老年人群队列的横断面研究显示[19],PM2.5暴露与糖尿病患病率增加相关。Liu等[20]在河南省农村地区开展的横断面研究结果显示,PM2.5浓度每增加1 μg·m−3与糖尿病患病风险增加呈正相关。已有研究提出了可能的生理学机制:PM2.5 能够引发脂肪细胞炎症、脂肪细胞因子表达改变、自主神经失调以及肝脏脂肪变性和内质网应激等代谢紊乱[21],通过各种通路发挥作用[2223],从而影响葡萄糖稳态、增加糖尿病发生的风险。

    农村地区人群食用蔬菜、水果频率较高与糖尿病患病风险、空腹血糖值呈负相关,这与大部分研究结果一致[2425]。在8个欧洲国家开展的前瞻性病例队列研究中[26],将循环血浆维生素C和类胡萝卜素作为水果和蔬菜摄入的客观生物标志物[27],发现较高的血浆维生素C、总类胡萝卜素与较低的2型糖尿病风险相关。引起这一现象的可能机制为:蔬菜和水果的摄入有助于控制体重和肥胖,其中富含大量维生素和膳食纤维,维生素A、维生素C和维生素E可以通过降低氧化应激和改善脂质代谢等途径,改善胰岛素敏感性[28];高膳食纤维摄入量可通过增加结肠中短链脂肪酸乙酸盐、丙酸盐和丁酸盐的产量来改善全身胰岛素敏感性[29],从而降低糖尿病的患病风险。

    同时近期研究发现,空气污染与人类健康之间的关系很可能因饮食摄入等生活方式因素而改变。Wang等[13]研究结果显示,健康的饮食改变了PM2.5、NO2和NOX与全因死亡率的相关性,在蔬菜摄入量较高的参与者中,空气污染物与全因死亡风险增加之间的关联是减弱的。在一项大型前瞻性美国队列研究中[30],地中海饮食可以降低长期暴露于空气污染物相关的心血管疾病死亡风险。这与本研究的结果相似,分层分析发现,与PM2.5低浓度-高蔬菜摄入频率组相比,PM2.5低浓度-低蔬菜摄入频率组的糖尿病患病风险大幅降低,空腹血糖值降低0.869 mmol·L−1。蔬菜和水果的摄入频率增加,对PM2.5长期暴露相关的糖尿病和空腹血糖值的具有一定的保护作用。由于PM2.5通过炎症和氧化应激等途径产生局部和全身反应,而补充特定食物和营养素有可能减轻PM2.5暴露引起的不良健康影响[31]。例如补充维生素B可以减弱PM2.5引起的DNA甲基化[32]。维生素E可减轻PM2.5诱导的炎症和氧化应激,降低人脐静脉血管内皮细胞中炎性细胞因子白介素6和肿瘤坏死因子α的表达[33]。因此,对于高浓度PM2.5暴露人群,除了政府层面提供的保护政策和措施外,在个人层面的预防措施,如健康合理的饮食习惯,可以有效地减弱空气污染引起的不良健康效应。

    本研究的优势在于:大部分研究仅局限于PM2.5和饮食因素对糖尿病的主效应,未考虑PM2.5和饮食因素之间的交互作用,故本研究为饮食因素对PM2.5与糖尿病关联的效应修饰作用研究增加了新的证据。目前的研究仍然存在一定的局限性:(1)由于是横断面研究,无法确定PM2.5长期暴露与糖尿病患病率之间的因果关系,这需要在前瞻性随访队列中获得更多证据,以确定PM2.5暴露是否与2型糖尿病的发生有因果关系。(2)考虑到每日摄入食物中的其他营养素,尤其是碳水化合物和膳食纤维对糖尿病的影响,后期需要采用膳食模式而不是单一食物类型来研究饮食对大气污染相关慢性病的影响。(3)本研究虽然调整生活行为等一些混杂因素,但仍然可能存在未能考虑的潜在混杂因素如温度、噪音、绿地和室内空气污染等。(4)基于问卷调查的回忆偏差和报告偏差,可能会影响结果的准确性和可靠性。

    综上,PM2.5长期暴露与宁夏农村地区人群糖尿病患病风险增加和空腹血糖值升高之间存在关联,蔬菜和水果摄入增加会降低大气PM2.5长期暴露相关的糖尿病患病风险。因此居民应当遵循膳食指南,合理健康饮食。同时,国家开展大气污染治理、加快空气质量改善工作,对提高人群健康水平,预防糖尿病具有重要意义。

  • 图  1   研究对象纳入流程图

    Figure  1.   Flowchart of inclusion of research participants

    图  2   基于饮食因素分层分析大气PM2.5浓度每升高1 μg·m−3对糖尿病患病风险(OR)和空腹血糖值(mmol·L−1)的影响

    两个模型中均调整了性别、年龄、BMI、文化程度、吸烟、饮酒和高血压疾病史。

    Figure  2.   Effects of 1 μg·m−3 increase in atmospheric PM2.5 on diabetes risk (OR) or fasting blood glucose (mmol·L−1) stratified by dietary factors

    The models are adjusted for gender, age, BMI, education, smoking, drinking, and history of hypertension.

    表  1   调查对象的基线特征分布

    Table  1   Baseline characteristic distributions of survey respondents

    变量
    (Variable)
    糖尿病(Diabetes)t/χ2P
    是(Yes)否(No)
    年龄/岁(Age/years)60.3±9.156.4±10.0−14.586<0.001
    性别(Gender)0.5960.440
     男(Male)559(41.0)5004(39.9)
     女(Female)805(59.0)7549(60.1)
    文化程度(Education),n(%)2.0750.354
     初中及以下
     (Junior high school
     and below)
    1304(95.6)12080(96.2)
     高中(Senior high school)49(3.6)405(3.2)
     大学及以上
     (University or above)
    11(0.8)68(0.5)
    饮酒(Drinking),n(%)0.0560.813
     否(No)1295(94.9)11894(94.7)
     是(Yes)69(5.1 )659(5.3)
    吸烟(Smoking),n(%)1.1330.287
     否(No)1175(86.1)10673(85.0 )
     是(Yes)189(13.9)1880(15.0)
    BMI/(kg·m−2),n(%)43.194<0.001
     <18.521(1.5 )238(1.9 )
     18.5~<24.0414(30.4 )4918(39.2)
     ≥24.0929(68.1)7397(58.9)
    蔬菜摄入频率/(次·周−1)
    [Frequency of vegetable
    intake/(times·week−1)],n(%)
    15.059<0.001
     <1246(18.0)1780(14.2)
     1~3192(14.1)1929(15.4)
     ≥4926(67.9 )8844(70.5)
    水果摄入频率/(次·周−1)
    [Frequency of fruit
    intake/(times·week−1)],n(%)
    7.558<0.05
     <1238(17.4 )1844(14.7)
     1~3367(26.9)3420(27.2)
     ≥4759(55.6 )7289(58.1 )
    咸口味(Salty taste),n(%)8.053<0.05
     偏淡(Light)652(47.8)5499(43.8)
     适中(Middle)554(40.6 )5452(43.4 )
     偏咸(Salty)158(11.6 )1602(12.8 )
    心血管疾病(Cardiovascular disease),n(%),n(%)274.25<0.001
     否(No)754(55.2)9544(76.0)
     是(Yes)610(44.6)3009(24.0)
    下载: 导出CSV

    表  2   PM2.5每升高1 μg·m−3与糖尿病患病风险(OR)和空腹血糖(mmol·L−1)的关系

    Table  2   Association between 1 μg·m−3 increase in PM2.5 and diabetes prevalence (OR) or fasting blood glucose (mmol·L−1)

    模型
    (Model)
    糖尿病
    (Diabetes)
    空腹血糖
    (Fasting blood glucose)
    OR(95%CI)P$ \beta $(95%CI)P
    粗模型
    (Crude model)
    1.017(1.005~1.030)<0.05 0.012(0.006~0.018)<0.001
    模型1
    (Model 1)
    1.018(1.006~1.031)<0.05 0.012(0.006~0.018)<0.001
    模型2
    (Model 2)
    1.018(1.005~1.030)<0.05 0.012(0.006~0.018)<0.001
    模型3
    (Model 3)
    1.018(1.005~1.032)<0.05 0.011(0.004~0.017)<0.05
    [注] 粗模型:未调整混杂因素;模型1:调整性别、年龄;模型2:在模型1的基础上调整个体特征(BMI、文化程度)、生活行为情况(吸烟、饮酒)和CVD疾病史;模型3:在模型2基础上调整饮食情况(蔬菜摄入频率、水果摄入频率和咸口味)。[Note] Crude model: No confounding factor; Model 1: Gender and age are introduced; Model 2: On the basis of Model 1, individual characteristics (BMI, education), life habits (smoking, drinking) and history of CVD are introduced; Model 3: Dietary conditions (frequency of vegetable consumption, frequency of fruit consumption, and salty taste) are introduced based on Model 2.
    下载: 导出CSV

    表  3   饮食因素与糖尿病患病风险(OR)和空腹血糖值(mmol·L−1)之间的关联

    Table  3   Associations of dietary factors with the risk of diabetes (OR) and fasting blood glucose levels (mmol·L−1)

    饮食因素(Dietary factor)糖尿病患病风险(Diabetes)空腹血糖(Fasting blood glucose)
    OR(95%CI)$ \beta $(95%CI)
    蔬菜摄入频率/(次·周−1)[Frequency of vegetable intake/(times·week−1)]
     <1
     1~30.729(0.594~0.893)**−0.202(−0.304~−0.101)***
     ≥40.832(0.715~0.971)*−0.073(−0.153~0.007)
    水果摄入频率/(次·周−1)[Frequency of fruit intake/(times·week−1)]
     <1
     1~30.836(0.702~0.998)*−0.021(−0.110~0.068)
     ≥40.818(0.700~0.959)*0.041(−0.040~0.121)
    咸口味(Salty taste)
     偏咸(Salty)
     适中(Middle)1.002(0.832~1.213)0.015(−0.073~0.093)
     偏淡(Light)1.068(0.889~1.290)0.004(−0.073~0.104)
    [注] *:P<0.05;**:P<0.01;***:P<0.00;以每周蔬菜摄入频率<1、每周水果摄入频率<1和偏咸口味作为参考组;模型中调整了性别、年龄、BMI、文化程度、吸烟、饮酒和CVD疾病史。[Note] *: P<0.05; **: P<0.01; ***: P<0.001; Ref.: Weekly frequency of vegetable intake <1, weekly frequency of fruit intake < 1, and salty taste; gender, age, BMI, education, smoking, drinking, and history of CVD are adjusted.
    下载: 导出CSV

    表  4   敏感性分析结果[OR(95%CI)]

    Table  4   Sensitivity analysis results [OR(95%CI)]

    PM2.5暴露浓度
    (PM2.5 exposure concentration)
    糖尿病
    (Diabetes)
    空腹血糖
    (Fasting blood glucose)
    OR95%CI$ \beta $95%CI
    调整1年平均浓度
    (1-year average concentration)
    1.0411.022~1.061 0.0210.013~0.030
    调整2年平均浓度
    (2-year average concentration)
    1.0281.012~1.038 0.0150.007~0.022
    调整3年平均浓度
    (3-year average concentration)
    1.0171.002~1.033 0.0100.003~0.018
    [注] 模型中调整了性别、年龄、BMI、文化程度、吸烟、饮酒、CVD疾病史、蔬菜摄入频率、水果摄入频率和咸口味。[Note]All models are adjusted for gender, age, BMI, education, smoking, drinking, and history of CVD, frequency of vegetable consumption, frequency of fruit consumption, and salty taste.
    下载: 导出CSV
  • [1]

    YUAN H, LI X, WAN G, et al. Type 2 diabetes epidemic in east Asia: a 35-year systematic trend analysis[J]. Oncotarget, 2018, 9(6): 6718-6727. doi: 10.18632/oncotarget.22961

    [2]

    YANG B Y, QIAN Z, LI S, et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 communities Chinese health study[J]. Lancet Planet Health, 2018, 2(2): e64-e73. doi: 10.1016/S2542-5196(18)30001-9

    [3]

    LI C Y, WU C D, PAN W C, et al. Association between long-term exposure to PM2.5 and incidence of type 2 diabetes in Taiwan: a national retrospective cohort study[J]. Epidemiology, 2019, 30 Suppl 1: S67-S75.

    [4]

    LEE M, OHDE S. PM2.5 and diabetes in the Japanese population[J]. Int J Environ Res Public Health, 2021, 18(12): 6653. doi: 10.3390/ijerph18126653

    [5]

    QIU H, SCHOOLING C M, SUN S, et al. Long-term exposure to fine particulate matter air pollution and type 2 diabetes mellitus in elderly: a cohort study in Hong Kong[J]. Environ Int, 2018, 113: 350-356. doi: 10.1016/j.envint.2018.01.008

    [6]

    YANG B Y, FAN S, THIERING E, et al. Ambient air pollution and diabetes: a systematic review and meta-analysis[J]. Environ Res, 2020, 180: 108817. doi: 10.1016/j.envres.2019.108817

    [7]

    SAFIRI S, KARAMZAD N, KAUFMAN J S, et al. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: results from the global burden of disease study 2019[J]. Front Endocrinol (Lausanne), 2022, 13: 838027. doi: 10.3389/fendo.2022.838027

    [8]

    GBD 2019 Diabetes and Air Pollution Collaborators. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990-2019: an analysis of data from the global burden of disease study 2019[J]. Lancet Planet Health, 2022, 6(7): e586-e600. doi: 10.1016/S2542-5196(22)00122-X

    [9] 孙洪平, 陈国芳, 刘超. 植物性饮食与2型糖尿病的研究进展[J]. 内科理论与实践, 2022, 17(4): 349-352.

    SUN H P, CHEN G F, LIU C. Research progress on plant-based diet and type 2 diabetes[J]. J Intern Med Concepts Pract, 2022, 17(4): 349-352.

    [10] 董卫华, 满青青, 李裕倩, 等. 2015年中国老年人膳食纤维摄入与糖代谢状况的关联性[J]. 卫生研究, 2023, 52(1): 33-39.

    DONG W H, MAN Q Q, LI Y Q, et al. Relationship between dietary fiber intake and glucose metabolism in the elderly of China in 2015[J]. J Hyg Res, 2023, 52(1): 33-39.

    [11] 王娴, 潘研, 巴明玉, 等. 2型糖尿病患者膳食因素与平均血糖波动幅度的关联性研究[J]. 中华全科医学, 2022, 20(10): 1691-1694.

    WANG X, PAN Y, BA M Y, et al. Study on the relationship between dietary factors and mean amplitude of glycemic excursions in patients with diabetes mellitus type 2[J]. Chin J Gen Pract, 2022, 20(10): 1691-1694.

    [12]

    TONG H. Dietary and pharmacological intervention to mitigate the cardiopulmonary effects of air pollution toxicity[J]. Biochim Biophys Acta, 2016, 1860(12): 2891-2898. doi: 10.1016/j.bbagen.2016.05.014

    [13]

    WANG M, ZHOU T, SONG Q, et al. Ambient air pollution, healthy diet and vegetable intakes, and mortality: a prospective UK Biobank study[J]. Int J Epidemiol, 2022, 51(4): 1243-1253. doi: 10.1093/ije/dyac022

    [14]

    WEI J, LI Z, LYAPUSTIN A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications[J]. Remote Sens Environ, 2021, 252: 112136. doi: 10.1016/j.rse.2020.112136

    [15] 魏迎梅. 中国大中城市PM2.5的季节和趋势变化特征[D]. 泉州: 华侨大学, 2020: 73.

    WEI Y M. Seasonal and trend characteristics of PM2.5 in large and medium cities in China[D]. Quanzhou: Huaqiao University, 2020: 73.

    [16]

    YE Z, LI X, HAN Y, et al. Association of long-term exposure to PM2.5 with hypertension and diabetes among the middle-aged and elderly people in Chinese mainland: a spatial study[J]. BMC Public Health, 2022, 22(1): 569. doi: 10.1186/s12889-022-12984-6

    [17]

    LI X, ZHANG W, LADEN F, et al. Dietary nitrate intake and vegetable consumption, ambient particulate matter, and risk of hypertension in the nurses' health study[J]. Environ Int, 2022, 161: 107100. doi: 10.1016/j.envint.2022.107100

    [18]

    DIMAKAKOU E, JOHNSTON H J, STREFTARIS G, et al. Is Environmental and occupational particulate air pollution exposure related to type-2 diabetes and dementia? A cross-sectional analysis of the UK biobank[J]. Int J Environ Res Public Health, 2020, 17(24): 9581. doi: 10.3390/ijerph17249581

    [19]

    ELBARBARY M, HONDA T, MORGAN G, et al. Ambient air pollution exposure association with diabetes prevalence and glycosylated hemoglobin (HbA1c) levels in China. Cross-sectional analysis from the WHO study of AGEing and adult health wave 1[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2020, 55(10): 1149-1162. doi: 10.1080/10934529.2020.1787011

    [20]

    LIU F, GUO Y, LIU Y, et al. Associations of long-term exposure to PM1, PM2.5, NO2 with type 2 diabetes mellitus prevalence and fasting blood glucose levels in Chinese rural populations[J]. Environ Int, 2019, 133: 105213. doi: 10.1016/j.envint.2019.105213

    [21]

    ARIAS-PÉREZ R D, TABORDA N A, GÓMEZ D M, et al. Inflammatory effects of particulate matter air pollution[J]. Environ Sci Pollut Res Int, 2020, 27(34): 42390-42404. doi: 10.1007/s11356-020-10574-w

    [22]

    LAWAL A O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: the role of Nrf2 and AhR-mediated pathways[J]. Toxicol Lett, 2017, 270: 88-95. doi: 10.1016/j.toxlet.2017.01.017

    [23]

    LI Y, XU L, SHAN Z, et al. Association between air pollution and type 2 diabetes: an updated review of the literature[J]. Ther Adv Endocrinol Metab, 2019, 10: 2042018819897046.

    [24] 赵方蕾. 中国65岁及以上老年人膳食营养现况及糖尿病膳食影响因素分析[D]. 北京: 中国疾病预防控制中心, 2021: 162.

    ZHAO F L. Analysis of dietary nutrition status and dietary influence factors of diabetes mellitus in Chinese elderly aged 65 and above[D]. Beijing: Chinese Center for Disease Control and Prevention, 2021: 162.

    [25]

    AHMED A, LAGER A, FREDLUND P, et al. Consumption of fruit and vegetables and the risk of type 2 diabetes: a 4-year longitudinal study among Swedish adults[J]. J Nutr Sci, 2020, 9: e14. doi: 10.1017/jns.2020.7

    [26]

    ZHENG J S, SHARP S J, IMAMURA F, et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries[J]. BMJ, 2020, 370: m2194.

    [27]

    PENNANT M, STEUR M, MOORE C, et al. Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials[J]. Br J Nutr, 2015, 114(9): 1331-1340. doi: 10.1017/S0007114515003165

    [28] 孙永叶, 戴云鹤, 张华琦, 等. 维生素E对糖尿病胰岛素抵抗的影响及其相关机制分析[J]. 微量元素与健康研究, 2015, 32(5): 53-55.

    SUN Y Y, DAI Y H, ZHANG H Q, et al. The effect of vitamin E on insulin resistance in diabetics and analysis of its mechanisms[J]. Stud Trace Elem Health, 2015, 32(5): 53-55.

    [29]

    FLINT H J, SCOTT K P, DUNCAN S H, et al. Microbial degradation of complex carbohydrates in the gut[J]. Gut Microbes, 2012, 3(4): 289-306. doi: 10.4161/gmic.19897

    [30]

    LIM C C, HAYES R B, AHN J, et al. Mediterranean diet and the association between air pollution and cardiovascular disease mortality risk[J]. Circulation, 2019, 139(15): 1766-1775. doi: 10.1161/CIRCULATIONAHA.118.035742

    [31]

    TRUSHNA T, TRIPATHI A K, RANA S, et al. Nutraceuticals with anti-inflammatory and anti-oxidant properties as an intervention for reducing the health effects of fine particulate matter: potential and prospects[J]. Comb Chem High Throughput Screen, 2022, 25(10): 1639-1660. doi: 10.2174/1386207324666210412121226

    [32]

    ZHONG J, KARLSSON O, WANG G, et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial[J]. Proc Natl Acad Sci USA, 2017, 114(13): 3503-3508. doi: 10.1073/pnas.1618545114

    [33]

    BO L, JIANG S, XIE Y, et al. Effect of vitamin E and omega-3 fatty acids on protecting ambient PM2.5-induced inflammatory response and oxidative stress in vascular endothelial cells[J]. PLoS One, 2016, 11(3): e152216.

图(2)  /  表(4)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  24
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 录用日期:  2024-01-14
  • 网络出版日期:  2024-03-27
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回