黄河流域环境污染与人群健康效应研究进展

郑会秋, 张志红

郑会秋, 张志红. 黄河流域环境污染与人群健康效应研究进展[J]. 环境与职业医学, 2023, 40(12): 1451-1458. DOI: 10.11836/JEOM23137
引用本文: 郑会秋, 张志红. 黄河流域环境污染与人群健康效应研究进展[J]. 环境与职业医学, 2023, 40(12): 1451-1458. DOI: 10.11836/JEOM23137
ZHENG Huiqiu, ZHANG Zhihong. Research progress on environmental pollution and population health effects in the Yellow River Basin[J]. Journal of Environmental and Occupational Medicine, 2023, 40(12): 1451-1458. DOI: 10.11836/JEOM23137
Citation: ZHENG Huiqiu, ZHANG Zhihong. Research progress on environmental pollution and population health effects in the Yellow River Basin[J]. Journal of Environmental and Occupational Medicine, 2023, 40(12): 1451-1458. DOI: 10.11836/JEOM23137

黄河流域环境污染与人群健康效应研究进展

基金项目: 国家自然科学基金资助项目(82273595,81872589);中央支持地方科技发展资金项目—自由探索类基础研究项目(YDZJSX2021A028);山西省哲学社会科学规划课题项目(2022YK036)
详细信息
    作者简介:

    郑会秋(1988—),女,博士生,讲师;E-mail:zhxqqjye1988@163.com

    通讯作者:

    张志红,E-mail:zzh1973@sxmu.edu.cn

  • 中图分类号: R12

Research progress on environmental pollution and population health effects in the Yellow River Basin

Funds: This study was funded.
More Information
  • 摘要:

    黄河国家战略是习近平生态文明思想的重要内容。黄河流域存在环境污染问题,对人体健康产生了长远影响。为深入了解黄河流域环境污染与人群健康效应,本文归纳了黄河流域大气污染、水污染、土壤污染的特征及人体健康损害。黄河流域大气颗粒物污染依然不容乐观,臭氧、二氧化氮污染逐渐突出;水中氟、碘和重金属等除了引起生物地球化学性疾病外,还与多种慢性病相关;土壤重金属和持久性有机污染物污染较重,还存在全氟辛酸等污染。建议未来进行跨区域研究,以及大气污染物与其他环境因素的联合暴露研究;还要深入探讨水污染物致慢性病的潜在发病机制;并加强对土壤污染物的动态监测,开展健康风险评估。

     

    Abstract:

    The National Strategy on the Yellow River is an important part of Xi Jinping's Ecological Civilization Thought. Environmental pollution in the Yellow River Basin has a long-term impact on human health. In order to have an in-depth understanding of the effects of environmental pollution on population health in the Yellow River Basin, this review summarized the characteristics of air pollution, water pollution, and soil pollution in the Yellow River Basin, as well as associated human health damage. The atmospheric particulate pollution in the Yellow River Basin is still not optimistic, and ozone pollution and nitrogen dioxide pollution are gradually prominent. Fluoride, iodine, and heavy metals in water are related to various chronic diseases in addition to causing biogeochemical diseases. The soil in the Yellow River Basin is heavily polluted with heavy metals and persistent organic pollutants, and there are also other pollutants such as perfluorooctanoic acid. It is necessary to carry out cross-regional studies and joint exposure studies of air pollutants and other environmental factors, explore in depth the potential pathogenesis of chronic diseases caused by water pollutants, strengthen the dynamic monitoring of these pollutants in soil, and carry out health risk assessment in the future.

     

  • 黄河流域是我国重要的生态屏障和经济地带,在我国经济社会发展和生态安全方面具有十分重要的地位[1]。黄河国家战略是习近平生态文明思想的重要内容。2021年10月,中共中央、国务院印发了《黄河流域生态保护和高质量发展规划纲要》,提出黄河治理要加强生态环境保护。2022年11月,科技部印发了《黄河流域生态保护和高质量发展科技创新实施方案》,提出针对黄河流域环境污染问题,开展大气污染防治、水体和土壤(地下水)污染防治等技术攻关。黄河流域流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区[2],流域内存在大气污染、水污染、土壤污染,对人体健康产生较大影响。

    目前,针对黄河流域,学者们已开展了很多大气污染、水污染、土壤污染的相关健康危害研究,确认了多种大气污染物、水污染物、土壤污染物会对人体造成健康损害,带来致癌或非致癌健康风险。以往对于大气污染,更多关注人体呼吸系统的影响,对于水污染和土壤污染,更多关注生物地球化学性疾病,当前人们开始关注大气污染、水污染和土壤污染与其他疾病和健康损害或健康风险之间的关系。本文旨在对黄河流域大气污染、水污染、土壤污染与人群健康关系的研究现状进行综述,这对控制黄河流域环境污染,保护人群健康具有重要意义。

    黄河流域各省区大气颗粒物(particulate matter, PM)污染依然较重,在一些省区,臭氧(ozone, O3)、二氧化氮(nitrogen dioxide, NO2)、二氧化硫(sulfur dioxide, SO2)污染逐渐突出。黄河流域城市大气污染呈现季节性、时空异质性等特征,其主要影响因素以及各因素的作用强度有所不同。大气污染可引起人群死亡率增多,并与呼吸系统、心血管系统、生殖系统等健康损害有关。

    近年来,在黄河流域的河南、山西、四川、山东等省份,依然存在PM污染,O3污染也逐渐加重[35]。在黄河三角洲的垦利开发区及市区,PM10和PM2.5浓度依然较高[6]。在甘肃和河南省,PM浓度整体呈下降趋势[78]。在兰州市,NO2污染较国内其他城市更为严重[7]。见表1

    表  1  黄河流域各省区大气主要污染物特征
    Table  1.  Characteristics of major atmospheric pollutants in the Yellow River Basin by provinces
    地区主要污染物特征
    山西省[3]PM、O3、NO2为主要污染物
    四川省[4]西部PM2.5、O3为主要污染物
    山东省[5-6]西部和北部O3污染严重;青岛冬季的PM10污染较重;黄河三角洲的垦利开发区及市区PM10和PM2.5浓度较高
    甘肃省[7]兰州PM污染虽较重,但PM10和PM2.5浓度呈下降趋势, SO2呈下降趋势,NO2、O3呈上升趋势,NO2污染严重
    河南省[8]PM2.5、O3为郑州市的主要污染物,但整个河南省PM2.5浓度整体降低
    下载: 导出CSV 
    | 显示表格

    黄河流域城市大气污染呈现出季节性。2015—2020年黄河流域9省、自治区(青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东)68个主要城市的空气质量呈逐渐好转趋势,但每年10月至次年2月大气污染形势依然严峻[1]。近年来,四川省自贡市和甘肃省冬季PM2.5浓度最高[49];黄河三角洲(山东省东营市境内)、青海藏区和甘肃西南部不同季节PM2.5中各种成分的浓度不同[610]。山西和陕西冬季出现PM10浓度持续降低,O3浓度持续升高的趋势[11];山东省冬季SO2和秋季NO2排放量较高[12]。见表2

    表  2  黄河流域大气污染季节性特征
    Table  2.  Seasonal characteristics of air pollution in the Yellow River Basin
    地区季节性特征
    黄河流域九省区[1]每年10月至次年2月污染形势严峻
    山西省、陕西省[11]冬季PM10和一氧化碳(carbon monoxide, CO)浓度持续降低,O3浓度持续升高
    四川省[4]自贡市冬季PM2.5浓度最高
    甘肃省[9]PM2.5浓度在冬春季节高,夏秋季节低
    山东省[612]不同季节PM2.5中各种成分的浓度分布不同;冬季SO2排放量最高;秋季NO2显著高于春季和夏季;黄河三角洲PM的9种重金属元素中,镉、铅、汞含量冬季高于夏季,铬、镍、铜、锰含量夏季高于冬季
    青海省[10]藏区PM2.5中的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)和硝基多环芳烃浓度在冬季最高
    下载: 导出CSV 
    | 显示表格

    黄河流域城市大气污染呈现出空间异质性。黄河流域上游的兰西城市群和宁夏沿黄城市群、上中游交界处的呼包鄂榆城市群空气质量较好,中游的关中平原和晋中城市群次之,中下游交界处的中原城市群和下游山东半岛城市群较差。近年来,对于PM2.5,其年均浓度低值区稳定分布在内蒙古中部和西南部高原地区,高值区分布在自然条件较差的西北内陆和人类活动强度较高的地带。对于NO2、SO2,其浓度高值区主要集中在晋中城市群南部、关中平原城市群东部、中原城市群及山东半岛城市群。对于O3,在河南呈现由西北向东南递减的趋势[13]

    黄河流域各省区大气污染来源主要包括煤和生物质的燃烧、工业排放、汽车尾气、扬尘、烟花和鞭炮的燃放、二次形成、长距离传输排放等,其影响因素包括城市扩张、人口增长、地方经济增长以及科技支出等[14]。除此之外,污染物之间的相互作用也会影响大气污染。研究表明,挥发性有机物(volatile organic compounds, VOCs)与NO2的减排比达到3以上可达到防治O3污染的目标[15],而降低烯烃(C4烯烃)的浓度可减少氮氧化物对O3的贡献。

    气象因素对大气污染也有显著影响。日降水量超过10 mm时可显著改善空气质量,而较低的气温、较弱的风、较高的相对湿度、沙尘暴、较低的行星边界层高度等不利的气象条件则会使大气污染尤其是PM2.5污染更加恶化[1416]。高温、日照时长、相对湿度低的天气条件下容易形成严重的O3污染,在高湿条件下,PM2.5、VOCs和NO2等多种因素相互作用也会参与高浓度O3事件的发生[17]

    在黄河流域范围内,针对PM2.5的研究主要集中于呼吸系统的影响。山东省的研究表明,大气PM2.5暴露与儿童青少年的肺功能呈负相关(用力肺活量b=–57,95%CI:–89~–18),并且PM1可能是PM2.5引起肺部不良反应的主要成分[18]。PM2.5浓度与60岁以上人群慢性阻塞性肺疾病的死亡率呈正相关,PM2.5浓度每上升43 μg·m−3,死亡率升高2.7%(RR=1.027,95%CI:1.010~1.044)[19]。山西省11个城市的研究表明,PM2.5的暴露会导致严重的呼吸系统疾病负担[20]

    近年来,学者也关注PM2.5对其他系统的影响。短期内PM2.5每增加10 μg·m−3,心血管疾病急诊就诊量增加1.93%[21],长期暴露于PM2.5可增加30岁以上人群的高血压患病率(OR=1.08,95%CI:1.04~1.12)[22]。此外,PM2.5中的铅可对成人造成致癌风险,PM2.5中的砷对儿童、青少年和成人均可造成致癌风险[12]。长期暴露于PM2.5和PM10可能会干扰精子发生[23];在整个妊娠期间,孕妇暴露于PM2.5b=−2.739,95%CI: −3.693~−1.785)、PM10b=−2.458,95%CI:−3.116~−1.800)可增加足月低出生体重儿的风险[24]

    目前,也开展了很多黄河流域范围内的O3等其他大气主要污染物与健康的关系研究。短期暴露于O3可增加呼吸系统急诊就诊风险(RR=1.014,95%CI:1.008~1.020)[25];SO2、NO2和CO浓度的增加与成都哮喘紧急救护车调度量呈正相关,OR分别为1.188、1.115、1.031[26]

    O3、SO2、NO2和CO除了对人体呼吸系统健康有影响之外,还对生殖系统健康以及新生儿体重造成影响。长期暴露于SO2与女性较低的卵巢储备功能相关(b=−0.01,95%CI:0.015~0.002)[27]。成都市的研究表明,在体外受精治疗时间内的任何时期暴露于大气污染都会影响体外受精妊娠结果[28]。西安市的研究表明,孕妇在妊娠期间暴露于SO2b=−3.982,95%CI:−5.511~−2.453)和CO(b=−1.511,95%CI:−1.970~−1.053)可显著降低足月新生儿出生体重,而暴露于NO2b=1.734,95%CI:0.533~2.935)和O3b=4.531,95%CI:3.239~5.823)则可显著增加足月新生儿出生体重,O3甚至显著增加了巨大儿的风险(OR=1.028,95%CI:1.015~1.040)[24]

    黄河流域水污染物包括总氮等常规指标、化学元素、微生物、新型污染物等。其中,水中氟、碘、硒和砷对健康的影响与地区有关,不同省份这四种水化学元素的暴露情况不同,具有空间异质性;重金属、抗生素耐药基因(antibiotic resistance genes, ARGs)、高浓度的新型污染物以及一些优势菌可对人体健康构成风险。

    黄河流域水污染呈现空间异质性等特征。黄河流域水污染状态整体向好,2021年的主要污染物为总氮,其次为化学需氧量、氨氮、总磷;微量元素污染水平优良[29]。随着时间的推移,2003—2017年水化学需氧量和氨氮浓度呈下降趋势,而溶解氧浓度呈上升趋势。但穿越黄土高原的中下游仍处于严重污染状态[30]。在黄河流域中下游的主要支流中,只有清水河的水质中等,其他支流水质均较差,下游的金堤河和大文河水质最差。人为输入和农业、工业污染排放是主要污染源[31]

    在黄河流域水环境中,宁夏、山西、四川等省份存在氟暴露。氟暴露除了会导致氟斑牙和氟骨症外,还会对认知功能和生殖功能、神经发育等产生影响。对宁夏清水河流域的研究表明,有19个行政县的107万居民患有氟斑牙,其中患有氟斑牙和氟骨症的儿童增多,并且地方性氟中毒发病的空间分布与地下水氟离子含量的空间分布一致,在清水河流域,固原市的原州区和西吉县为地方性氟中毒的高发区,浅层地下水是地方性氟中毒发病率高的主要原因[32]。太原市地下水总体氟水平和风险指数呈下降趋势;然而,郊区的健康风险指数高于城市地区,比如古交区的个别地点的氟水平较高(1.06 mg·L−1[33]。对四川省的研究表明,中度、重度氟中毒与韦氏儿童智力测量的数字跨度总分差有关(b=−2.13,95%CI:−4.24~−0.02;b=−4.28,95%CI:−8.22~−0.33),说明饮水氟暴露可能对儿童产生发育性神经毒性[34]。老年认知损害人群的尿氟水平[(2.47±2.88) mg·L−1]高于认知功能正常组[(1.46±1.04 )mg·L−1],提示饮水的高氟暴露是认知障碍的潜在危险因素[35]。氟化物暴露还可显著提高男性农民下丘脑-垂体-睾丸轴的血清雌二醇水平;对于血清促卵泡激素和雌二醇浓度,氟化物暴露与遗传标志之间有交互作用[36],对生殖产生影响。

    在黄河流域水环境中,甘肃、山东、山西等省份存在高水碘暴露。高水碘暴露除了会导致甲状腺相关疾病外,还对血脂、高血压、糖尿病等产生影响。研究显示,甘肃省14个市(州)饮用水中广泛缺碘,但存在以行政村为单位的高水碘点状分布区[37]。山东省的研究表明,儿童日碘摄入量≥300 mg·d−1时,甲状腺肿大率超过5%;饮用水碘浓度≥300 μg·L−1的成年人甲状腺自身免疫、亚临床甲状腺功能减退,甲状腺结节、甲状腺功能障碍的患病率高[38]。高水碘地区亚临床甲状腺疾病的易感性还受基因多态性的影响,PDE4Drs27178)TT等位基因与育龄妇女亚临床甲状腺疾病相关[39]。不同水碘区的自身免疫性甲状腺炎病例和对照相比,存在多个差异DNA甲基化位点[40]

    水碘摄入还与甲状腺疾病以外的多种疾病有关。山东省的研究表明,水碘>300 µg·L−1的人群血清甘油三酯显著高于水碘含量<300 µg·L−1组;随着水碘浓度的升高,总胆固醇和低密度脂蛋白胆固醇呈下降趋势[41]。山西省的研究表明,过量碘摄入还可能增加高血压和糖尿病的风险,特别是对孕妇和哺乳期妇女等特殊人群[42]

    在黄河流域多省份的水环境中,存在砷、汞、铬、铅等重金属暴露,砷为主要暴露的重金属,铅、汞、铬次之。研究表明,陕西省、甘肃省、山西省以及内蒙古的部分区域水环境中存在砷暴露,并可对儿童和成年人造成潜在健康风险。长期饮用水砷暴露人群血清中色氨酸和苯丙氨酸水平与皮肤病发病呈负相关,可在皮肤病的早期识别中发挥重要作用[43]。饮用水中的砷含量越高,地方性砷病个体的砷初级和次级甲基化能力越低,而较低的初级和次级砷甲基化能力可增加成年女性皮肤损伤的风险[44]。砷生物甲基化与基因多态性相关,饮用水中砷含量较高的个体CDH1GSTP1基因启动子对甲基化的敏感性增加[45]。山西与内蒙古相邻的两个高砷地区的研究表明,ADIPOQ/rs266729FABP2/rs1799883基因多态性影响高水砷暴露人群对原发性高血压的易感性[46]

    研究表明,长期灌溉含有汞、铅的黄河水会导致农田土壤和春小麦中金属的积累,部分地区自供井饮用水中的铬、钼、锰、砷、钡、镍、钒等10种重金属的浓度均超过了我国或世界卫生组织的限值,会对人体造成致癌风险和非致癌风险[47]

    水中新型污染物包括持久性有机污染物(persistent organic pollutants, POPs)、环境内分泌干扰物、抗生素、全氟烷基物质以及微塑料等。河南省和甘肃省饮用水源区水体中存在有机磷酯、氧化三苯膦、全氟辛酸(perfluorooctanoic acid, PFOA)和全氟辛烷磺酸(perfluorooctane sulfonic, PFOS)等新型污染物,但不会对居民构成健康威胁[48]。环境风险评估表明,PFOS可能对地表水和地下水构成高风险,但成年人通过用水接触PFOS不构成健康风险[49]。而内蒙古和山东省的研究表明,灌溉用水和自来水中高浓度的全氟和多氟烷基物质(perfluorinated and polyfluoroalkyl substances, PFAS)会影响人类健康[50]。青藏高原水体中有微塑料检出,微塑料丰度与水质呈显著相关[51]

    研究表明,甘肃省的水环境中存在VOCs,其中三氯乙烯、四氯乙烯和1,2-二氯乙烯具有非致癌风险,1,2-二氯乙烷和氯乙烯具有高致癌风险[52]。四川省、内蒙古、山东省、山西省汾河水环境中存在抗生素污染,主要包括喹诺酮类、磺胺类、大环内酯类、四环素类和碳青霉烯类等,可能对人类造成耐药风险[53]。近年来,黄河流域ARGs逐渐被检出[54]。微生物定量风险评估表明,大约有35%的人口暴露于未经处理和被污染的饮用水,通过饮用水可增加人的抗生素耐药风险[55]

    2021年黄河流域综合水质指数较好,总氮为主要污染物,其次是化学需氧量、氨氮和总磷[29]。山东省长乐县地下水超标离子主要为Cl、SO4 2−和NO3 ,且存在明显的空间异质性,NO3 的空间变异最为显著。陕西省的水环境中高暴露毒理学指标是硝酸盐、氟化物等,且存在明显的空间异质性和显著的健康风险。黄河兰州地区15项常规理化和生物指标普遍超标,通过饮用水暴露对居民人体健康存在潜在风险。内蒙古色连矿区地下水含盐量、硬度、硝酸盐均较高,对儿童和成人均存在健康风险[56]

    黄河流域个别地区饮用水中硒浓度低。比如,海东市平安区饮用水硒浓度显著低于我国地表水50 μg·L−1的饮用水硒标准,大骨节病病区饮用水中硒含量显著低于非大骨节病病区[57]。黄河流域水微生物污染情况也不容乐观,黄河流域水中大肠菌群的平均丰度值超过国家地表水环境质量标准[58]。金帝河是黄河流域中下游支流细菌物种多样性和丰富度最大的河流,细菌功能基因明显富集,工业、农业和生活污水以及工业废气是黄河流域中下游支流的主要污染源[31]

    目前,黄河流域土壤污染物包括重金属、新型污染物、微生物、农药等。黄河流域范围内多个省份土壤中的重金属污染对人体存在健康风险,甘肃、青海、山东和内蒙古则存在土壤硒含量过低的情况。黄河流域多个省份土壤中有POPs检出,同时个别省份土壤中存在有机氯农药,土壤中新型污染物PFOA等可通过土壤经食物链方式进入人体,可对人体构成潜在的健康风险。

    黄河流域农田土壤重金属污染存在空间异质性,并且不同重金属的高值分布区域也不同。砷、镉的高值区主要分布在宁夏、山西、甘肃、河南的部分区域,汞和铅在河南、陕西和甘肃存在大面积高值区,铬在黄河流域却无明显高值区[59]。黄河流域水灌溉土壤中多氯联苯污染、有机氯农药污染在不同区域的分布也不同。土壤中多氯联苯浓度为中下游低于上游,有机氯农药浓度则为中下游高于上游[60]

    重金属是黄河流域土壤的主要污染物,河南、甘肃、山东、山西等多省份存在镉、汞、锌等重金属污染,可通过土壤−作物系统对人体健康产生影响。河南省开封市污水灌区农田土壤中重金属含量持续下降,但表层土壤依然存在镉污染[61],黄河宁夏段农业土壤存在轻度镉、砷污染[62]。兰州市的研究表明,耕地“五毒”重金属所致健康风险的暴露途径为经口摄入>皮肤接触>呼吸摄入[63]

    研究发现,河南省污水灌区葡萄园中土壤存在严重的镉和锌污染[64],兰州七里河地区少量土壤和蔬菜中存在轻微汞污染[65],山东省泾河流域生姜种植区表层土壤中存在铬等重金属的富集[66],而这些重金属会通过土壤作物系统富集于作物上,经常食用被重金属污染的土壤种植出来的作物,会对人体造成非致癌和致癌风险。

    甘肃省两个典型铜矿土壤存在锌、铜、铅、铬、镉和汞等污染[67],山东省的五个采矿和重工业县土壤存在砷的重度污染[68],山西焦化厂周围土壤中有镍、镉、锰、铅和铬的富集[69],可对采矿和冶炼厂周围居民(尤其是儿童)的健康造成风险。

    除了重金属污染,黄河流域多省份土壤还存在PFOA、POPs、多氯联苯等污染,可对当地居民造成健康损害。山东省和四川省的农业土壤中存在PFOA,其含量从表层到深层呈下降趋势[70]。山东省淄博市桓台县某氟化工工厂附近土壤中存在全氟羧酸,可通过土壤经食物链进入人体,与青少年血清中高浓度的PFOA有关,可能对当地青少年构成潜在的健康风险[71]

    黄河流域多个省份存在POPs污染,主要为PAHs、二噁英类多氯联苯等污染物。PAHs污染主要来源于生物质、煤炭和化石燃料燃烧,可通过接触或吸入被PAHs污染的悬浮土壤颗粒进入人体,也可通过土壤作物系统从土壤积累到作物中[72],进而对人体构成致癌风险,儿童最为敏感[73]

    黄河流域范围内40个国家重点控制断面岸边土壤样品中检出8种二噁英类多氯联苯,但毒性当量值比较低,基本不会对沿岸居民产生健康风险[74]。而山东省某工业区和周边居民区的部分土壤中检出多氯化萘、多氯二苯并二噁英、多氯联苯,三者对工人和居民有较低的致癌和非致癌风险[75],仍有必要加强对黄河流域多氯联苯的监测与控制。

    黄河三角洲土壤盐渍化可显著降低丙酸杆菌和微球菌的相对丰度,降低微生物的群体感应能力,而氟喹诺酮类、四环素类、氨基糖苷类、β -内酰胺类和替加环素类ARGs可影响土壤pH值,与土壤的pH值呈正相关[76]。河南省绿甸乡棉花粗放区农业土壤存在有机氯农药污染,主要包括六氯环己烷、七氯、氯丹和二氯二苯三氯乙烷及滴滴涕,可给当地居民造成致癌风险[77]。甘肃省渭源县、宁县土壤和谷物样品中硒含量较低,两地儿童硒营养状况分别处于中等硒营养水平、缺硒边缘[78]。研究表明,山东、内蒙古土壤硒分布与人群血清硒蛋白P的空间分布呈正相关,人群血清硒蛋白P水平较低[79]。而青海省海东市平安区土壤中的硒含量则较高[80]。陕西省部分区域土壤−蔬菜−水系统的硒可对当地居民造成非致癌风险[81]

    综上所述,目前已开展了许多关于黄河流域大气污染与人体健康的相关研究,但是仍然存在一些局限。首先,黄河流域大气污染对人体健康影响的研究区域多局限于一个省份或城市,不同研究区域的结果存在差异,难以准确评估黄河流域大气污染对人体健康的影响,因此进行跨区域的研究是必要的。其次,大气污染物与气象因素对健康的影响可能存在交互作用,建议未来将大气污染物数据与气象数据结合进行深入研究。再次,大气污染物与化学物质、膳食营养等其他环境因素的联合暴露可能对人体产生影响,建议未来开展大气污染物与其他环境因素的联合暴露研究。

    黄河流域水氟、碘和重金属污染等可引起生物地球化学性疾病,还与生殖系统、心血管系统等慢性疾病相关,但是目前仅局限于调查研究或监测,未来建议开展实验性研究,探讨水氟、碘和重金属致慢性病的发病机制。黄河流域水环境中有ARGs检出,未来建议加强对ARGs的监测,探讨水中ARGs发生、迁移和传播的影响因素及其耐药机制,防止ARGs通过生活饮用水对人体造成健康损害。黄河流域水环境中PFAS、微塑料等新型污染物检出,建议寻找污染源,并深入探讨其对人体的急慢性毒性、遗传和发育毒性等。

    黄河流域土壤重金属和POPs污染较重,未来建议加强对不同用地类型土壤重金属和POPs的动态监测,降低土壤重金属和POPs的输入。黄河流域土壤还存在PFOA等污染,未来建议开展土壤新型污染物的监测及健康风险评估,防止其通过食物链进入人体损害人群的健康。黄河流域土壤污染的人群健康评估多以环境健康风险评估作为结局,较少有研究各系统的健康损害,建议未来补充这方面系列研究。

  • 表  1   黄河流域各省区大气主要污染物特征

    Table  1   Characteristics of major atmospheric pollutants in the Yellow River Basin by provinces

    地区主要污染物特征
    山西省[3]PM、O3、NO2为主要污染物
    四川省[4]西部PM2.5、O3为主要污染物
    山东省[5-6]西部和北部O3污染严重;青岛冬季的PM10污染较重;黄河三角洲的垦利开发区及市区PM10和PM2.5浓度较高
    甘肃省[7]兰州PM污染虽较重,但PM10和PM2.5浓度呈下降趋势, SO2呈下降趋势,NO2、O3呈上升趋势,NO2污染严重
    河南省[8]PM2.5、O3为郑州市的主要污染物,但整个河南省PM2.5浓度整体降低
    下载: 导出CSV

    表  2   黄河流域大气污染季节性特征

    Table  2   Seasonal characteristics of air pollution in the Yellow River Basin

    地区季节性特征
    黄河流域九省区[1]每年10月至次年2月污染形势严峻
    山西省、陕西省[11]冬季PM10和一氧化碳(carbon monoxide, CO)浓度持续降低,O3浓度持续升高
    四川省[4]自贡市冬季PM2.5浓度最高
    甘肃省[9]PM2.5浓度在冬春季节高,夏秋季节低
    山东省[612]不同季节PM2.5中各种成分的浓度分布不同;冬季SO2排放量最高;秋季NO2显著高于春季和夏季;黄河三角洲PM的9种重金属元素中,镉、铅、汞含量冬季高于夏季,铬、镍、铜、锰含量夏季高于冬季
    青海省[10]藏区PM2.5中的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)和硝基多环芳烃浓度在冬季最高
    下载: 导出CSV
  • [1]

    YANG X, FENF Z, CHEN Y. Study on the spatio-temporal patterns of urban air pollution and its spatial mismatch with air pollutant emissions in the Yellow River Basin, China[J]. Environ Res Commun, 2023, 5(5): 055008. doi: 10.1088/2515-7620/acd0f4

    [2]

    LU C, JIN S, ZHANG T. Spatio-temporal comprehensive measurement and influencing factors of the health index of residents in the Yellow River Basin[J]. Sustainability, 2023, 15(13): 10255. doi: 10.3390/su151310255

    [3]

    SONG H, ZHUO H, FU S, et al. Air pollution characteristics, health risks, and source analysis in Shanxi province, China[J]. Environ Geochem Health, 2021, 43(1): 391-405. doi: 10.1007/s10653-020-00723-y

    [4]

    ZHAO S, YU Y, YIN D, et al. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China[J]. Sci Total Environ, 2018, 624: 540-557. doi: 10.1016/j.scitotenv.2017.12.172

    [5]

    WANG H, GAO Y, SHENG L, et al. The impact of meteorology and emissions on surface ozone in Shandong province, China, during summer 2014-2019[J]. Int J Environ Res Public Health, 2022, 19(11): 6758. doi: 10.3390/ijerph19116758

    [6]

    LIU T, ZHAO C, CHEN Q, et al. Characteristics and health risk assessment of heavy metal pollution in atmospheric particulate matter in different regions of the Yellow River Delta in China[J]. Environ Geochem Health, 2023, 45(5): 2013-2030. doi: 10.1007/s10653-022-01318-5

    [7]

    ZHOU X, ZHANG T, LI Z, et al. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013-2016[J]. Environ Sci Pollut Res Int, 2018, 25(15): 15174-15190. doi: 10.1007/s11356-018-1670-6

    [8] 葛岂序, 刘岩, 杨洪, 等. 2015—2019年河南省PM2.5时空特征与驱动因素分析[J]. 环境科学, 2022, 43(4): 1697-1705.

    GE Q X, LIU Y, YANG H, et al. Analysis on spatial-temporal characteristics and driving factors of PM2.5 in Henan province from 2015 to 2019[J]. Environ Sci, 2022, 43(4): 1697-1705.

    [9]

    GUAN Q, CAI A, WANG F, et al. Spatio-temporal variability of particulate matter in the key part of Gansu province, western China[J]. Environ Pollut, 2017, 230: 189-198. doi: 10.1016/j.envpol.2017.06.045

    [10]

    ZHANG L, YANG L, BI J, et al. Characteristics and unique sources of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 at a highland background site in northwestern China[J]. Environ Pollut, 2021, 274: 116527. doi: 10.1016/j.envpol.2021.116527

    [11] 王维思, 马清霞, 张建辰, 等. 2015—2019年冬季黄河流域中游大气污染物空间分布特征[J]. 测绘通报, 2021(10): 39-47.

    WANG W S, MA Q X, ZHANG J C, et al. Spatial distribution of air pollutants in the middle reaches of the Yellow River Basin in winter 2015—2019[J]. Bull Surv Mapp, 2021(10): 39-47.

    [12]

    WANG Z, YAN J, ZHANG P, et al. Chemical characterization, source apportionment, and health risk assessment of PM2.5 in a typical industrial region in North China[J]. Environ Sci Pollut Res Int, 2022, 29(47): 71696-71708. doi: 10.1007/s11356-022-19843-2

    [13]

    YU S, YIN S, ZHANG R, et al. Spatiotemporal characterization and regional contributions of O3 and NO2: an investigation of two years of monitoring data in Henan, China[J]. J Environ Sci, 2020, 90: 29-40. doi: 10.1016/j.jes.2019.10.012

    [14]

    LIU L, MA X, WEN W, et al. Characteristics and potential sources of wintertime air pollution in Linfen, China[J]. Environ Monit Assess, 2021, 193(5): 252. doi: 10.1007/s10661-021-09036-8

    [15]

    XIE Y, CHENG C, WANG Z, et al. Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China[J]. Sci Total Environ, 2021, 800: 149422. doi: 10.1016/j.scitotenv.2021.149422

    [16]

    XU W, TIAN Y, LIU Y, et al. Understanding the spatial-temporal patterns and influential factors on air quality index: the case of North China[J]. Int J Environ Res Public Health, 2019, 16(16): 2820. doi: 10.3390/ijerph16162820

    [17]

    WANG G, JIA S, LI R, et al. Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou[J]. J Environ Sci, 2020, 95: 58-64. doi: 10.1016/j.jes.2020.03.045

    [18]

    WU H, ZHANG Y, WEI J, et al. Association between short-term exposure to ambient PM1 and PM2.5 and forced vital capacity in Chinese children and adolescents[J]. Environ Sci Pollut Res Int, 2022, 29(47): 71665-71675. doi: 10.1007/s11356-022-20842-6

    [19]

    CHEN J, SHI C, LI Y, et al. Effects of short-term exposure to ambient airborne pollutants on COPD-related mortality among the elderly residents of Chengdu city in Southwest China[J]. Environ Health Prev Med, 2021, 26(1): 7. doi: 10.1186/s12199-020-00925-x

    [20]

    CAO D, LI D, WU Y, et al. Ambient PM2.5 exposure and hospital cost and length of hospital stay for respiratory diseases in 11 cities in Shanxi Province, China[J]. Thorax, 2021, 76(8): 815-820. doi: 10.1136/thoraxjnl-2020-215838

    [21]

    CHEN R, GAO Q, SUN J, et al. Short-term effects of particulate matter exposure on emergency room visits for cardiovascular disease in Lanzhou, China: a time series analysis[J]. Environ Sci Pollut Res Int, 2020, 27(9): 9327-9335. doi: 10.1007/s11356-020-07606-w

    [22]

    XU J, ZHANG Y, YAO M, et al. Long-term effects of ambient PM2.5 on hypertension in multi-ethnic population from Sichuan province, China: a study based on 2013 and 2018 health service surveys[J]. Environ Sci Pollut Res Int, 2021, 28(5): 5991-6004. doi: 10.1007/s11356-020-10893-y

    [23]

    QIU Y, YANG T, SEYLER B C, et al. Ambient air pollution and male fecundity: a retrospective analysis of longitudinal data from a Chinese human sperm bank (2013-2018)[J]. Environ Res, 2020, 186: 109528. doi: 10.1016/j.envres.2020.109528

    [24]

    SHANG L, HUANG L, YANG L, et al. Impact of air pollution exposure during various periods of pregnancy on term birth weight: a large-sample, retrospective population-based cohort study[J]. Environ Sci Pollut Res Int, 2021, 28(3): 3296-3306. doi: 10.1007/s11356-020-10705-3

    [25]

    MA Y, SHEN J, ZHANG Y, et al. Short-term effect of ambient ozone pollution on respiratory diseases in western China[J]. Environ Geochem Health, 2022, 44(11): 4129-4140. doi: 10.1007/s10653-021-01174-9

    [26]

    CHENG J, JIANG X, SHI C, et al. Association between gaseous pollutants and emergency ambulance dispatches for asthma in Chengdu, China: a time-stratified case-crossover study[J]. Environ Health Prev Med, 2019, 24(1): 20. doi: 10.1186/s12199-019-0773-0

    [27]

    FENG X, LUO J, WANG X, et al. Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China[J]. Environ Pollut, 2021, 278: 116868. doi: 10.1016/j.envpol.2021.116868

    [28]

    ZENG X, JIN S, CHEN X, et al. Association between ambient air pollution and pregnancy outcomes in patients undergoing in vitro fertilization in Chengdu, China: a retrospective study[J]. Environ Res, 2020, 184: 109304. doi: 10.1016/j.envres.2020.109304

    [29]

    TIAN Y, WEN Z, CHENG M, et al. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China[J]. Sci Total Environ, 2022, 846: 157389. doi: 10.1016/j.scitotenv.2022.157389

    [30]

    QUAN J, XU Y, MA T, et al. Improving surface water quality of the Yellow River Basin due to anthropogenic changes[J]. Sci Total Environ, 2022, 836: 155607. doi: 10.1016/j.scitotenv.2022.155607

    [31]

    ZHAO M M, WANG S M, CHEN Y P, et al. Pollution status of the Yellow River tributaries in middle and lower reaches[J]. Sci Total Environ, 2020, 722: 137861. doi: 10.1016/j.scitotenv.2020.137861

    [32]

    LI M, QU X, MIAO H, et al. Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia, China[J]. Environ Sci Pollut Res Int, 2020, 27(16): 20281-20291. doi: 10.1007/s11356-020-08451-7

    [33]

    LI Y, WANG F, FENG J, et al. Long term spatial-temporal dynamics of fluoride in sources of drinking water and associated health risks in a semiarid region of Northern China[J]. Ecotoxicol Environ Saf, 2019, 171: 274-280. doi: 10.1016/j.ecoenv.2018.12.090

    [34]

    CHOL A L, ZHANG Y, SUN G, et al. Association of lifetime exposure to fluoride and cognitive functions in Chinese children: a pilot study[J]. Neurotoxicol Teratol, 2015, 47: 96-101. doi: 10.1016/j.ntt.2014.11.001

    [35]

    LI M, GAO Y, CUI J, et al. Cognitive impairment and risk factors in elderly people living in fluorosis areas in China[J]. Biol Trace Elem Res, 2016, 172(1): 53-60. doi: 10.1007/s12011-015-0568-0

    [36]

    MA Q, HUANG H, SUN L, et al. Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms?[J]. Chemosphere, 2017, 188: 525-531. doi: 10.1016/j.chemosphere.2017.08.166

    [37] 姬康媚, 阮烨, 窦瑜贵, 等. 2017年甘肃省生活饮用水碘含量调查[J]. 卫生研究, 2019, 48(2): 265-268. doi: 10.19813/j.cnki.weishengyanjiu.2019.02.012

    JI K M, RUAN Y, DOU Y G, et al. Investigation of iodine content in drinking-water of Gansu province in 2017[J]. J Hyg Res, 2019, 48(2): 265-268. doi: 10.19813/j.cnki.weishengyanjiu.2019.02.012

    [38]

    YAO J, ZHANG W, WANG J, et al. The status of iodine nutrition after removing iodized salt in high water iodine regions: a cross-sectional study in China[J]. Biol Trace Elem Res, 2022, 200(3): 1020-1031. doi: 10.1007/s12011-021-02727-w

    [39]

    SU C, YU T, ZHAO R, et al. Subclinical thyroid disease and single nucleotide polymorphisms in reproductive-age women in areas of Shanxi province, China, where iodine exposure is excessive[J]. Asia Pac J Clin Nutr, 2018, 27(6): 1366-1373.

    [40]

    REN B, WAN S, WU H, et al. Effect of different iodine levels on the DNA methylation of PRKAA2, ITGA6, THEM4 and PRL genes in PI3K-AKT signaling pathway and population-based validation from autoimmune thyroiditis patients[J]. Eur J Nutr, 2022, 61(7): 3571-3583. doi: 10.1007/s00394-022-02907-x

    [41]

    GAO J, ZHANG M, WANG X, et al. Effects of long-term excessive iodine intake on blood lipids in Chinese adults: a cross-sectional study[J]. Eur J Clin Nutr, 2021, 75(4): 708-714. doi: 10.1038/s41430-020-00773-6

    [42]

    WANG D, WAN S, LIU P, et al. Relationship between excess iodine, thyroid function, blood pressure, and blood glucose level in adults, pregnant women, and lactating women: a cross-sectional study[J]. Ecotoxicol Environ Saf, 2021, 208: 111706. doi: 10.1016/j.ecoenv.2020.111706

    [43]

    WEI Y, JIA C, LAN Y, et al. The association of tryptophan and phenylalanine are associated with arsenic-induced skin lesions in a Chinese population chronically exposed to arsenic via drinking water: a case-control study[J]. BMJ Open, 2019, 9(10): e025336. doi: 10.1136/bmjopen-2018-025336

    [44]

    WEI B, YU J, YANG L, et al. Arsenic methylation and skin lesions in migrant and native adult women with chronic exposure to arsenic from drinking groundwater[J]. Environ Geochem Health, 2017, 39(1): 89-98. doi: 10.1007/s10653-016-9809-1

    [45]

    ZHANG Y, LI Y, LUO L, et al. Factors affecting differential methylation of DNA promoters in arsenic-exposed populations[J]. Biol Trace Elem Res, 2019, 189(2): 437-446. doi: 10.1007/s12011-018-1504-x

    [46]

    CHENG J, LI Y, HE Q, et al. Essential hypertension in patients exposed to high-arsenic exposed areas in western China: genetic susceptibility and urinary arsenic metabolism characteristics[J]. J Trace Elem Med Biol, 2021, 67: 126778. doi: 10.1016/j.jtemb.2021.126778

    [47]

    BAI M, ZHANG C, BAI Y, et al. Occurrence and health risks of heavy metals in drinking water of self-supplied wells in Northern China[J]. Int J Environ Res Public Health, 2022, 19(19): 12517. doi: 10.3390/ijerph191912517

    [48]

    QIAO X, JIAO L, ZHANG X, et al. Contamination profiles and risk assessment of per- and polyfluoroalkyl substances in groundwater in China[J]. Environ Monit Assess, 2020, 192(2): 76. doi: 10.1007/s10661-019-8005-z

    [49]

    LI Y, LIU Y, SHI G, et al. Occurrence and risk assessment of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in surface water, groundwater and sediments of the Jin River Basin, Southeastern China[J]. Bull Environ Contam Toxicol, 2022, 108(6): 1026-1032. doi: 10.1007/s00128-021-03435-w

    [50]

    ZHANG M, WANG P, LU Y, et al. Transport and environmental risks of perfluoroalkyl acids in a large irrigation and drainage system for agricultural production[J]. Environ Int, 2021, 157: 106856. doi: 10.1016/j.envint.2021.106856

    [51]

    FENG S, LU H, YAO T, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. J Hazard Mater, 2021, 417: 126034. doi: 10.1016/j.jhazmat.2021.126034

    [52]

    LIU Y, HAO S, ZHAO X, et al. Distribution characteristics and health risk assessment of volatile organic compounds in the groundwater of Lanzhou City, China[J]. Environ Geochem Health, 2020, 42(11): 3609-3622. doi: 10.1007/s10653-020-00591-6

    [53]

    WANG Y, WANG L, LIU R, et al. Source-specific risk apportionment and critical risk source identification of antibiotic resistance in Fenhe River basin, China[J]. Chemosphere, 2022, 287(Pt 1): 131997.

    [54]

    ZHANG K, LI K, LIU Z, et al. The sources and potential hosts identification of antibiotic resistance genes in the Yellow River, revealed by metagenomic analysis[J]. Int J Environ Res Public Health, 2022, 19(16): 10420. doi: 10.3390/ijerph191610420

    [55]

    SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks[J]. Sci Total Environ, 2019, 669: 785-797. doi: 10.1016/j.scitotenv.2019.03.162

    [56]

    FENG W, WANG C, LEI X, et al. Distribution of nitrate content in groundwater and evaluation of potential health risks: a case study of rural areas in Northern China[J]. Int J Environ Res Public Health, 2020, 17(24): 9390. doi: 10.3390/ijerph17249390

    [57]

    ZHANG S, LI B, LUO K. Differences of selenium and other trace elements abundances between the Kaschin-Beck disease area and nearby non-Kaschin-Beck disease area, Shaanxi Province, China[J]. Food Chem, 2022, 373: 131481. doi: 10.1016/j.foodchem.2021.131481

    [58]

    ZHAO M M, CHEN Y P, XUE L G, et al. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region[J]. Sci Total Environ, 2018, 644: 873-883. doi: 10.1016/j.scitotenv.2018.07.006

    [59] 李军, 李旭, 李开明, 等. 黄河流域农田土壤重金属污染特征及其优先控制源分析[J]. 环境科学, 2023, 7: 1-20. doi: 10.13227/j.hjkx.202305211

    LI J, LI X, LI K M, et al. Characteristics and identification priority source of heavy metals pollution in farmland soils in the Yellow River Basin[J]. Environ Sci, 2023, 7: 1-20. doi: 10.13227/j.hjkx.202305211

    [60]

    CHEN Y P, ZHAO Y, ZHAO M M, et al. Potential health risk assessment of HFRs, PCBs, and OCPs in the Yellow River basin[J]. Environ Pollut, 2021, 275: 116648. doi: 10.1016/j.envpol.2021.116648

    [61]

    LIU S, YU F, ZHANG J. Heavy-metal speciation distribution and adsorption characteristics of Cr (VI) in the soil within sewage irrigation areas[J]. Int J Environ Res Public Health, 2022, 19(10): 6309. doi: 10.3390/ijerph19106309

    [62]

    SHEN W, HU Y, ZHANG J, et al. Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: a case study in irrigation area of the Yellow River[J]. Ecotoxicol Environ Saf, 2021, 225: 112752. doi: 10.1016/j.ecoenv.2021.112752

    [63] 张利瑞, 彭鑫波, 马延龙, 等. 兰州市耕地“五毒”重金属的风险评价与归因分析[J]. 环境科学, 2022, 43(9): 4767-4778. doi: 10.13227/j.hjkx.202112226

    ZHANG L R, PENG X B, MA Y L, et al. Risk assessment and attribution analysis of “five toxic” heavy metals in cultivated land in Lanzhou[J]. Environ Sci, 2022, 43(9): 4767-4778. doi: 10.13227/j.hjkx.202112226

    [64]

    YANG L, REN Q, ZHENG K, et al. Migration of heavy metals in the soil-grape system and potential health risk assessment[J]. Sci Total Environ, 2022, 806(Pt 2): 150646.

    [65]

    DUAN K, ZHANG S, ZHAO B, et al. Soil contamination and plant accumulation characteristics of toxic metals and metalloid in farmland soil-food crop system in Qilihe, China[J]. Environ Sci Pollut Res Int, 2021, 28(36): 50063-50073. doi: 10.1007/s11356-021-14175-z

    [66]

    WANG S, GAO Z, ZHANG Y, et al. Source and health risk assessment of heavy metals in soil-ginger system in the Jing River Basin of Shandong province, North China[J]. Int J Environ Res Public Health, 2021, 18(13): 6749. doi: 10.3390/ijerph18136749

    [67]

    LIU L, LU Y, SHAN Y, et al. Pollution characteristics of soil heavy metals around two typical copper mining and beneficiation enterprises in Northwest China[J]. Environ Monit Assess, 2022, 194(11): 788. doi: 10.1007/s10661-022-10416-x

    [68]

    CUI H, LIU L L, DAI J R, et al. Bacterial community shaped by heavy metals and contributing to health risks in cornfields[J]. Ecotoxicol Environ Saf, 2018, 166: 259-269. doi: 10.1016/j.ecoenv.2018.09.096

    [69]

    WANG C, LI P, KONG X, et al. Spatial variability and risk assessment of heavy metals in the soil surrounding solid waste from coking plants in Shanxi, China[J]. Environ Monit Assess, 2023, 195(1): 99. doi: 10.1007/s10661-022-10482-1

    [70]

    ZHANG Y, TAN D, GENG Y, et al. Perfluorinated compounds in greenhouse and open agricultural producing areas of three provinces of China: levels, sources and risk assessment[J]. Int J Environ Res Public Health, 2016, 13(12): 1224. doi: 10.3390/ijerph13121224

    [71]

    XIE L N, WANG X C, DONG X J, et al. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant[J]. Environ Int, 2021, 146: 106166. doi: 10.1016/j.envint.2020.106166

    [72]

    TIAN K, BAO H, ZHANG X, et al. Residuals, bioaccessibility and health risk assessment of PAHs in winter wheat grains from areas influenced by coal combustion in China[J]. Sci Total Environ, 2018, 618: 777-784. doi: 10.1016/j.scitotenv.2017.08.174

    [73]

    QI H, CHEN X, DU Y E, et al. Cancer risk assessment of soils contaminated by polycyclic aromatic hydrocarbons in Shanxi, China[J]. Ecotoxicol Environ Saf, 2019, 182: 109381. doi: 10.1016/j.ecoenv.2019.109381

    [74] 姚宏, 卢双, 张旭, 等. 黄河岸边土壤中类二噁英类多氯联苯污染现状及风险[J]. 环境科学, 2018, 39(1): 123-129. doi: 10.13227/j.hjkx.201704100

    YAO H, LU S, ZHANG X, et al. Pollution status and risks of dioxin-like polychlorinated biphenyls in the soil of the Yellow River[J]. Environ Sci, 2018, 39(1): 123-129. doi: 10.13227/j.hjkx.201704100

    [75]

    WU J, HU J, WANG S, et al. Levels, sources, and potential human health risks of PCNs, PCDD/Fs, and PCBs in an industrial area of Shandong Province, China[J]. Chemosphere, 2018, 199: 382-389. doi: 10.1016/j.chemosphere.2018.02.039

    [76]

    YANG C, ZHAO Y, CAO W, et al. Metagenomic analysis reveals antibiotic resistance genes and virulence factors in the saline-alkali soils from the Yellow River Delta, China[J]. Environ Res, 2022, 214(Pt 2): 113823.

    [77]

    WANG B, WU C, LIU W, et al. Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province, China[J]. Environ Sci Pollut Res Int, 2016, 23(7): 6680-6689. doi: 10.1007/s11356-015-5864-x

    [78]

    SUN L, CUI S, DENG Q, et al. Selenium content and/or T-2 toxin contamination of cereals, soil, and children's hair in some areas of Heilongjiang and Gansu provinces, China[J]. Biol Trace Elem Res, 2019, 191(2): 294-299. doi: 10.1007/s12011-018-1620-7

    [79]

    ZHANG X, WANG T, LI S, et al. A spatial ecological study of selenoprotein P and Keshan disease[J]. J Trace Elem Med Biol, 2019, 51: 150-158. doi: 10.1016/j.jtemb.2018.10.011

    [80]

    YU D, LIANG D, LEI L, et al. Selenium geochemical distribution in the environment and predicted human daily dietary intake in northeastern Qinghai, China[J]. Environ Sci Pollut Res Int, 2015, 22(15): 11224-11235. doi: 10.1007/s11356-015-4310-4

    [81]

    DU Y, LUO K, NI R, et al. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China[J]. Environ Geochem Health, 2018, 40(5): 2049-2069. doi: 10.1007/s10653-018-0082-3

  • 期刊类型引用(2)

    1. 李慧民,欧阳章燕,白珈鸣,李冰,梁祖金,夏智恒,张琳,龙丹凤,李拥军. 黄河流域地表水药物和个人护理品污染现状、健康风险及生态风险研究进展. 生态毒理学报. 2024(06): 190-207 . 百度学术
    2. 林亮亮. 大气污染物排放控制策略研究. 生态与资源. 2024(12): 111-113 . 百度学术

    其他类型引用(4)

表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  39
  • PDF下载量:  40
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-05-07
  • 录用日期:  2023-10-11
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-01

目录

/

返回文章
返回