射频电磁辐射及其物理参数对雄性生殖系统影响的研究进展

张芸怡, 贾泽涵, 宇文斌, 曹毅, 曹洪龙, 秦粉菊

张芸怡, 贾泽涵, 宇文斌, 曹毅, 曹洪龙, 秦粉菊. 射频电磁辐射及其物理参数对雄性生殖系统影响的研究进展[J]. 环境与职业医学, 2023, 40(8): 972-980. DOI: 10.11836/JEOM23026
引用本文: 张芸怡, 贾泽涵, 宇文斌, 曹毅, 曹洪龙, 秦粉菊. 射频电磁辐射及其物理参数对雄性生殖系统影响的研究进展[J]. 环境与职业医学, 2023, 40(8): 972-980. DOI: 10.11836/JEOM23026
ZHANG Yunyi, JIA Zehan, YU Wenbin, CAO Yi, CAO Honglong, QIN Fenju. Research progress on effects of radio frequency radiation and its physical parameters on male reproductive system[J]. Journal of Environmental and Occupational Medicine, 2023, 40(8): 972-980. DOI: 10.11836/JEOM23026
Citation: ZHANG Yunyi, JIA Zehan, YU Wenbin, CAO Yi, CAO Honglong, QIN Fenju. Research progress on effects of radio frequency radiation and its physical parameters on male reproductive system[J]. Journal of Environmental and Occupational Medicine, 2023, 40(8): 972-980. DOI: 10.11836/JEOM23026

射频电磁辐射及其物理参数对雄性生殖系统影响的研究进展

基金项目: 国家自然科学基金项目(81773463)
详细信息
    作者简介:

    张芸怡(1998—),女,硕士生;E-mail:245416819@qq.com

    通讯作者:

    曹洪龙,E-mail: caohonglong@suda.edu.cn

    秦粉菊,E-mail: qinfenju@usts.edu.cn

  • 中图分类号: R14

Research progress on effects of radio frequency radiation and its physical parameters on male reproductive system

Funds: This study was funded.
More Information
  • 摘要:

    随着手机、笔记本电脑和WIFI的广泛使用,射频电磁辐射(RFR)对人类健康的影响被日益关注,而人们对其生殖毒性尤为担忧。已有研究结果表明,生殖系统是RFR的敏感靶位。在雄性中,RFR与精子质量下降、血清睾酮水平降低等有关,但关于RFR物理参数对雄性生殖系统生物学效应的研究较少。本文介绍了常见的射频辐射源,从生精细胞、精子结构、血睾屏障、睾丸功能几个方面综述了RFR的雄性生殖毒性效应及机制,分析了物理参数,包括频率、处理时长和比吸收率对RFR所致雄性生殖毒性的影响,为人类安全合理使用射频电磁场和后续开展深入研究提供一定的理论基础与科学依据。

     

    Abstract:

    With the widespread use of mobile phones, laptops, and WIFI, the effects of radio frequency radiation (RFR) on human health are of increasing concern, and there are particular concerns about its reproductive toxicity. Studies have shown that the reproductive system is a sensitive target for RFR. In males, RFR is associated with decreased sperm quality and serum testosterone levels, but there are few studies on the biological effects of RFR by altering physical parameters on the male reproductive system. This paper introduced common sources of RFR, reviewed the toxic effects and mechanisms of RFR targeting male reproductive system from the aspects of spermatogenic cells, sperm structure, blood-testicular barrier, and testicular function, and analyzed male reproductive system related toxic effects of RFR by varying physical parameters including frequency, treatment duration, and specific absorption rate, so as to provide a theoretical basis and scientific basis for the safe and reasonable use of radio frequency electromagnetic field by humans and subsequent in-depth research.

     

  • 随着科技的迅速发展和生活方式的变化,人类越来越多地暴露在不同频率的电磁场(electromagnetic field, EMF)中,受到的电磁辐射(electromagnetic radiation, EMR)日益增多,且同属于EMR的人造辐射远远超过了自然辐射[1]。射频电磁辐射(radio frequency radiation, RFR)是人造辐射的一种,目前使用RFR的电器种类与数量也越来越多,尤其是手机、笔记本电脑和无线网络WIFI等使用量的急剧增加,引起了人们对EMF有害健康的担忧[2-5]。据报道,EMR扰乱生殖激素分泌,而一些流行病学研究表明,EMR与人类生殖疾病之间有直接联系[6]。因此,人们开始关注接触EMR对生殖健康的潜在负面影响。近年来,随着人口出生率的减少,EMR越发引起了人们的关注[7]

    据报道,大约15%的育龄夫妻受到不育的困扰,其中大约50%的不育是由男性因素引起的,且近几十年来处于不断上升趋势[8-9]。男性不育的最常见原因是他们无法产生足够健康和活跃的精子,在过去的几十年里,精子的质量及其生育能力在整个人类社会中都显著下降[10]。研究表明,EMR是造成男性不育的主要环境污染源之一[11]。电磁波可以通过影响人类的生殖系统、发育中的胚胎,进而影响胎儿,对人类的生殖产生影响[12]。近年来,大量不同的体内和体外研究表明,RFR可能会损害男性生殖器官的功能。由于睾丸的外膜是人体最薄的,介电常数也是最高的,它们可能特别容易受到EMR的影响[13]。有报道称,EMF暴露可导致受精率下降,生殖细胞死亡率增加,并通过诱导生精细胞凋亡而产生较高的凋亡指数[14]

    因此,这篇综述拟评估生活中常见的RFR对雄性生殖能力的影响,包括精子结构、血睾屏障和睾丸功能的变化,并分析RFR物理参数对其影响的作用。

    近几十年来,移动电话等手持无线通信设备的使用量一直在迅速增加,2021年用户已达86.48亿[15],因此,由这些设备产生的RFR所导致的健康风险被公众愈发关注[16]。相关研究已表明使用手机对机体健康的危害,如影响精子数量、活力和形态等[17]。近年来,打电话时,无线或有线耳机的使用增加,然而,当人们以这种方式使用手机时,通常会把手机放在裤子前口袋、拿在手上或别在腰带上,即男性生殖系统附近,那里的生殖细胞增殖和新陈代谢活跃,对外部环境有害因素非常敏感[18]

    越来越多的研究表明手机可能会对精子参数产生不利影响,导致男性生育能力下降[19]。在一项研究中,研究者们将同样的124份精液样本分成两组,暴露在手机辐射下1 h,发现RFR处理组精子活力、精子线速度、线性指数和精子顶蛋白活性降低,且DNA片段率、聚集素(clusterin, CLU)基因表达和CLU蛋白水平高于未处理对照组[20]。在调查使用手机对普通人群精液参数影响的实验中,研究人员发现每日通话时间的增加与精液参数的降低相关,这些参数包括精子密度、精液量和总精子数[21]

    笔记本电脑的使用在很多国家都很广泛,而且在不断增加,并成为日常生活中不可或缺的一部分,越来越多的人会将之放在膝盖、大腿上进行操作[22]。笔记本电脑在与身体密切接触使用时,靠近皮肤、骨骼、血液、生殖器等,因此,它们可能对使用的人或其后代的健康造成可检测到的损害[23]

    多项不同的研究表明,生活方式和环境因素会对精子DNA造成损害,在这方面起重要作用的环境因素之一是阴囊温度。因为笔记本电脑的内部温度能够达到70 ℃,直接热毒性可能会导致生殖疾病[24]。有研究发现,与那些没有将笔记本电脑放在腿上但处于相同坐姿的人相比,坐着将笔记本电脑放在腿上的人的阴囊温度提高了1 ℃[25]。将未暴露的精液样本和放置在距离每台笔记本电脑60 cm处1 h的精液样本进行比较,可以发现笔记本电脑暴露会导致精子活力下降和形态改变 [26]

    随着互联网在现代生活中日益发挥关键作用,WIFI系统的全球使用在过去几年中急剧增加,已成为互联网通信和连接的首选路线,家庭、工作场所、学校等,都被WIFI设备发出的射频信号覆盖,为人类提供了极大的便利[27]。尽管WIFI极大地改善了人类的生活,但WIFI的广泛使用导致了公众场所RFR的扩散[28]。多项WIFI相关研究表明,WIFI会导致氧化应激、脑电图改变、细胞凋亡、细胞DNA损伤、内分泌变化和神经细胞钙超载以及睾丸中精子受损[29]

    在一项评估3G+WIFI调制解调器对人类精子质量的影响研究中,与对照组相比,暴露组精子的速度曲线、速度直线、速度平均路径、平均角位移、横向位移和拍交叉频率降低,表明暴露于WIFI辐射下,人类精液质量明显下降[30]。在研究2 GHz的无线局域网对生殖系统的不利影响的实验中,睾丸组织病理学结果显示,与对照组相比,实验处理组大鼠在睾丸组织坏死和精子形成方面存在损伤[31]

    睾丸富含多不饱和脂肪酸,新陈代谢和细胞增殖速度快,抗氧化防御能力差,与其他组织相比更容易受到过氧化损伤[32]。睾丸含有精子和生精细胞,是对辐射最敏感的靶器官之一,且不同类型的生精细胞对环境辐射的敏感性有很大的差异[33-34]。精原干细胞处于休止状态而不易受损;繁殖中的各代精原细胞由于分裂持续时间短而受损机会较少;精母细胞对RFR最为敏感,尤其是粗线期精母细胞,由于正处在减数分裂中且持续的时间较长,其染色体运动活跃、复杂,易受外来因素的影响,因此受损的机会较多;精子细胞处于向精子转化的变形发育过程,对热不稳定[35-37]。在精子发生的不同阶段,生殖细胞在产生过程中受到的每一个损伤都可能会导致精子发生过程的中断,如EMR诱导产生有缺陷的精母细胞,会进一步引发精子发生障碍[38]。而处于精子发生不同阶段的雄性生殖细胞,对RFR所致氧化DNA损伤具有不同程度的易感性[39]。由于DNA出色的监测和修复能力,精原干细胞对氧化DNA损伤具有很强的抵抗力;而DNA损伤会导致减数分裂前期的分化生殖细胞出现双链断裂,对初级精母细胞的损伤可导致同源染色体间的联会紊乱,继而通过细胞凋亡被消除;一旦精子发生完成,精子就失去了DNA修复的能力,非常容易受到氧化攻击,从而导致氧化碱基加合物的形成,最终导致DNA断裂[40-41]。Pandey等[42]的研究中,对暴露于RFR的小鼠睾丸生殖细胞进行了流式细胞检测与彗星实验,观察到了广泛的DNA损伤,与对照组相比,RFR暴露后精原细胞的数量增加了2.5倍,而精子细胞的数量减少了五分之三,初级精母细胞到精子细胞的周转几乎减少了四分之三,精原细胞到精细胞的周转减少了五分之四,这表明RFR抑制精原细胞进入减数分裂,或细胞周期抑制,从而导致减数分裂后生殖细胞的枯竭。

    Gautam等[43]用3G手机对雄性Wistar大鼠进行辐射,结果发现实验组的精子数量和精子存活率降低,精子尾部形态产生变化,同时,低渗肿胀试验测得的尾部卷曲(存活)精子百分率下降,表示手机辐射组精子膜完整性变差。Hasan等[44]的实验中,暴露组小鼠睾丸的组织病理学检查显示,曲细精管形状不规则,大小不等,生精细胞层较少,生精小管腔较大。Ali[45]将Wistar雄性小鼠暴露于手机辐射下,显微检查显示,实验处理组的精子数量减少,形状发生变化;组织学参数显示,实验组的生精小管横截面、管腔和上皮直径发生变化。Mailankot等[46]将雄性Wistar大鼠置于(0.9/1.8 GHz)手机辐射下,每天1 h,持续28 d,研究结果显示实验组精子数量减少,平均活动率降低。

    支持细胞位于睾丸的生精小管,是生殖细胞的滋养细胞,通过促进生殖细胞的发育、增殖和分化,在精子发生中充当着重要角色[47]。支持细胞从基底膜延伸至精原细胞上皮腔,凭借血睾屏障(blood-testis barrier, BTB),将生精上皮分为基底部和近腔部[48]。BTB是睾丸毛细血管腔和生精小管腔之间的物理屏障,主要由支持细胞之间的紧密连接蛋白、粘连蛋白和缝隙连接蛋白构成的连接复合物所形成,通过在生精上皮参与构建生精微环境,提供免疫屏障,并赋予细胞极性来维持正常精子发生[49]。因此,支持细胞的紧密连接是BTB通透性的关键结构基础,其对雄性生育能力至关重要,如:在一定剂量的电磁刺激下,小鼠BTB通透性变大,进而会干扰精子的发生、穿透和排出[50]

    Odacı等[51]将SD雄性大鼠暴露于900 MHz EMF中,结果显示辐射组大鼠的生精管基底膜出现空泡,管腔内有水肿,生精小管直径和生精上皮厚度有所减少,表明900 MHz辐射对睾丸生精小管造成了一定程度的损伤,生精上皮细胞的生精周期在辐射中受到破坏。在探究手机辐射对睾丸结构和功能的影响实验中,Cetkin等[52]发现,在Johnsen睾丸活检评分中,EMF暴露对生精上皮的影响是负面的,EMF暴露组的生精组织平均体积、生精小管直径和生精上皮厚度都低于对照组,生精细胞数量减少,这些细胞从生精上皮脱离,生精小管相互分离。Shahin等[53]将小鼠置于1800 MHz手机辐射下,与对照组相比,手机辐射暴露会导致小鼠睾丸组织结构发生变化,各手机暴露组均出现生精小管萎缩现象,生精小管直径和管腔中精子总数以及生殖细胞数量降低,生精上皮变性,生精小管精原细胞周边层之间可见明显的间隙形成,在生精小管内可见少量多核巨细胞,且在间质细胞和生精小管伴随着促凋亡蛋白(p53、Bax、caspase-3)的表达上调,抗凋亡蛋白(Bcl-xL、Bcl-2、PARP-1)的表达下调。小鼠每天阴囊局部暴露于4G手机RFR 6 h,持续150 d,与对照组相比,其精子数量和活力减少,畸形精子明显增多,生精小管上皮细胞之间黏附松散,精子发生阶段缺失,生精上皮受损变薄,造成BTB结构紊乱,基底部的紧密连接蛋白及细胞外质特化结构蛋白减少,提示手机辐射可直接造成睾丸BTB结构受损,进而扰乱精子发生,影响精液质量,干扰生育能力[54]。亦有大量相关研究表明,4G手机RFR是通过上调睾素3(SPARC (osteonectin), CWCV and Kazal-like domains proteoglycan 3, SPOCK3)的表达,抑制降解细胞外基质的基质金属蛋白酶2(matrix metallopeptidase 2, MMP2) 的激活过程,影响BTB的更新循环,继而阻碍精子发生而降低了雄性生育力[55-56]。上述研究皆表明,日常RFR对BTB的损害是存在的。

    睾丸是产生精子的男性生殖器官,精子发生是一个高度复杂和协调的过程,受到很多基因和激素的影响[57]。睾酮作为最重要的激素之一,对男性生殖发育及维持正常精子发生起着关键的作用[58-59]。睾酮分泌紊乱会影响精子质量和男性生殖器官的生长发育,对生殖功能造成不利影响[60]。睾丸间质细胞通过分泌睾酮,赋予男性生殖必要的调节功能,因此,有研究表明,间质细胞合成分泌睾酮的过程可能是RFR对男性生殖产生负面影响的重要靶点[61]

    Oyewopo等[62]将成年雄性Wistar大鼠暴露在移动电话辐射(900/1800 MHz)中,每天1 h、2 h和3 h,持续28 d,结果发现与对照组相比,1 h暴露组血清中促卵泡激素(follicle-stimulating hormone, FSH)、促黄体生成素(luteinizing hormone, LH)和睾酮水平未见明显下降,2 h和3 h暴露组均明显下降。Singh等[63]研究了3G/4G手机对瑞士白化小鼠睾丸的长期影响,发现生精小管腔内没有精子,生精功能停止,伴随着间质细胞发育不全,血清睾酮水平降低,且4G暴露组的严重程度高于3G暴露组,去除暴露后,生精功能和睾酮水平有明显的恢复迹象。在评价900 MHz手机RFR所致BALB/c小鼠睾丸损伤实验中,研究者们发现其导致睾丸组织氧化应激、生精上皮厚度变薄以及血清睾酮水平下降[64]。Farag等[32]的研究中,与对照组相比,辐射组的血清睾酮水平下降,可能是由于间质细胞受到手机辐射损伤,因为间质细胞被认为是对电磁波最敏感的细胞。Shahin等[65]的研究发现,短时间暴露于2.45 GHz RFR会导致睾丸细胞凋亡,对小鼠生精小管造成损伤,降低睾丸间质细胞数量和血清睾酮浓度。与上述研究结果相矛盾,有一些研究发现RFR对雄性生殖系统没有影响。Dasdag等[66]开展的研究发现,在全身平均比吸收率(specific absorption ratio,SAR)为0.52 W·kg−1的情况下,每日较长时间暴露于900 MHz的RFR对大鼠睾丸功能或结构没有影响。

    众所周知,附睾为精子成熟提供了重要的微环境。一旦附睾被破坏,精子成熟可能会产生损害,导致不育[67]

    Houston等[68]将雄性小鼠暴露于905 MHz RFR下,每天12 h,持续1、3或5 周,结果显示,RFR对成熟附睾精子的活力和活动度产生了不利影响,从附睾尾分离出的活精子总数及精子活动率都随着辐射暴露时长增加而减少,精子在暴露后经历了线粒体产生活性氧(reactive oxygen species, ROS),所有暴露期间DNA氧化和断裂增加。Al-Dulamey等[69]研究了5 GHz微波辐射对小鼠雄性生殖系统的影响,发现与对照组相比,实验暴露组附睾精子数量、活精子百分率和正常精子百分率都降低,死亡精子百分率和异常精子百分率均明显增加。Adebayo等[70]的实验表明,与对照组相比,辐射组附睾严重扭曲,细胞结构丧失,精子完全消失,这可能是由附睾管的严重损伤造成的,以此导致暴露的大鼠生育力低下。Yaseen等[71]设置在手机三种模式状态(关机、非通话模式和通话)下,每天把小鼠放置在手机辐射下2 h,评估手机辐射对雄性白化小鼠附睾中精子形态和数量的影响,结果显示了非通话模式手机辐射对附睾的精子数量和形态无影响,而通话模式手机辐射使附睾中精子数量下降了30.43%,形态异常精子数量增加了182.36%,这可能与RFR的非热效应有关,并且增加ROS,从而导致DNA损伤以及成熟停滞的情况。

    理论上,RFR的电磁波必须穿透暴露的生物系统,并诱导内部电磁引起生物反应;另一方面,穿透深度或对RFR的吸收主要取决于射频辐射源参数如频率、功率密度等[72]。有研究结果显示RFR的辐射强度和持续时间会影响男性生殖能力参数,包括精子浓度、活动度、形态、存活率和凋亡等[73]。而EMF对生物体的影响程度取决于各种因素,例如,体重指数、骨密度、水分和电解质水平都可以改变EMF的电导率和生物反应性[74-75],且其对人体系统的影响关键取决于人体组织吸收的EMR能量,此能量的量度以组织电导率,感应电场强度和组织质量密度的函数——SAR来计算[76]。由此,RFR的频率、辐射时长和SAR三个物理参数对其雄性生物学效应具有重要影响作用。

    Jamaludin等[73]为了解RFR对精子参数的不良影响,将大鼠暴露于4200、9700 MHz辐射下,每天6 h,持续14 d,研究发现,实验组与对照组相比有变化,两种频率下精子浓度和存活率都下降,低频率4200 MHz使精子浓度下降了20.53%,精子存活率下降了45.50%,但高频率9700 MHz在精子浓度和精子存活率上降低均更为严重,分别为46.97%和95.77%,频率对精子DNA损伤方面无明显差异。为研究长期暴露于不同频率的EMR对大鼠睾丸组织单链DNA断裂和氧化应激变化的影响,Alkis等[77]将大鼠分别暴露于900、1800和2100 MHz射频场中,每天2 h,持续6个月,结果显示,与对照组相比,三个频率实验组大鼠睾丸中存在高水平的氧化应激,但DNA单链断裂仅发生在高频1800和2100 MHz的RFR。Chaithanya等[78]将大鼠暴露于900和1800 MHz的辐射中,每天2 h,持续3个月,结果显示,与对照组相比,血清睾酮水平无明显变化,精子数量减少,减少率分别为82.42%和83.26%,精子畸形率增加,增加率分别为155.15%和171.53%,但在两个不同的频率之间没有观察到变化。

    Aderemi等[79]让大鼠分别接受2、4、6和8 h的膝上型联网电脑辐射,共28 d,结果发现,与对照组相比,随着暴露时间的增加,精子数量、精子活力和睾酮水平均降低,LH水平呈不稳定变化,FSH水平呈不均匀下降,但这两者与对照组无明显变化,表明来自联网笔记本电脑的辐射可以影响精液质量和睾酮分泌并具有时间依赖性,并使男性促性腺激素变得不稳定。Sepehrimanesh等[80]每天将大鼠分别置于900 MHz射频电磁场中1、2和4 h,持续30 d,结果发现,实验暴露组的FSH和LH高于对照组,并且随着辐射时间的增多而逐渐升高;暴露组睾酮水平随辐射时间的增多而降低,表明暴露于RFR会使生殖激素受到干扰并具有时间依赖性,从而影响生殖功能。为了研究长期处于射频电磁场的影响,Erdemli等[81]的研究显示,与对照组相比,暴露组精子数量减少,间质结缔组织有损伤,血管化和水肿增加,并且随着辐射时间的增多,变化越显著,表明随着时间的变化,RFR会导致雄性生殖道的一些结构变化。Yu等[56]将大鼠暴露于辐射中50、100和150 d,研究发现,与对照组相比,50 d暴露组没有观察到精子质量的差异,100 d暴露组的精子活力略有下降,精子数、精子活力和精子形态均没有统计学意义,150 d暴露组的精子数、精子活力明显降低,正常精子减少,结果表明,长期暴露于RFR对精子质量造成损伤。

    郭玲[82]研究了220 MHz射频场中暴露30 d对成年雄性大鼠精子质量的影响,将大鼠随机分为两个不同暴露剂量组(0.014 W·kg−1和0.029 W·kg−1)和一个对照组,结果显示,与对照组相比,暴露组大鼠精子数量变少,精子存活率均下降,且辐射剂量越大,效应越显著;低剂量组大鼠畸形率略微增多,但未见统计学差异,高剂量组大鼠精子畸形率增多。Dong等[83]研究了1.5 GHz高功率微波全身暴露对睾丸病理结构和精子活动的影响,在SAR分别为3、6和12 W·kg−1的三个剂量情况下,把小鼠放置在1.5 GHz EMF下,结果显示,小鼠睾丸、精子和血清睾酮水平均未见明显的病理或超微结构改变,表明1.5 GHz高功率微波辐射在3、6和12 W·kg−1的剂量下全身暴露30 min,对小鼠雄性生殖系统没有造成明显损伤。An等[67]为了探讨射频电磁场对附睾微环境中精子成熟的影响,将大鼠暴露于SAR分别为1、2和4 W·kg−1的EMF(1.84 GHz)中,结果发现,与对照组相比,暴露组精子形态和显微结构没有变化,Bin1b蛋白表达和谷胱甘肽(glutathione, GSH)、超氧化物歧化酶(superoxide dismutase, SOD)、酸性磷酸酶(acid phosphatase, ACP)、碱性磷酸酶 (alkaline phosphatase, ALP)水平无明显变化,表明该实验条件下的1.84 GHz射频电磁场对SD大鼠附睾微环境中的精子成熟无明显影响。

    上述研究结果相矛盾,目前的研究存在样本量小以及SAR复杂的限制,RFR的SAR是否影响雄性生殖系统,有待进一步研究。

    氧气是所有有氧细胞的生物元素,它在保持正常的细胞功能上是必要的,然而,作为氧的自然代谢副产物的ROS可能对细胞有害,决定因素是ROS生成和能够清除自由基的抗氧化剂之间是否存在平衡[84]。ROS的一个主要来源是线粒体,线粒体是存在于每个细胞中的细胞器,在能量供应中发挥核心作用[85]。另一个重要的ROS来源是烟酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidases, NOX),这些酶复合体由多个亚基组成,在不同的细胞类型中以不同的成分存在[86]。RFR诱导的损伤会导致ROS产生增加,当细胞暴露在EMF中时,ROS通过各种机制发生[87]

    多数相关研究表明,射频电磁场会导致睾丸出现一些损伤,其作用机制可能是由氧化应激损伤引起的[88],如图1。RFR可以改变生物分子中电子的能级和自旋方向,从而产生自由基,这些自由基构成了生物系统中大部分的ROS,过量的ROS会破坏氧化还原平衡,导致细胞、组织和生物水平的氧化应激[89]。氧化应激是指由于ROS的过量产生或调节性抗氧化机制的衰竭而导致的氧化还原信号调节的失败,它会损害脂质、蛋白质和DNA等大分子,并最终导致细胞死亡、DNA损伤和脂质过氧化[90]。脂质过氧化导致形成一种小分子活性醛,通常以硫醇化合物为靶标,扰乱参与精子活动的主要蛋白质的功能,从而降低精子活力[91]。丙二醛(malondialdehyde, MDA) 是脂质过氧化产物之一,是氧化应激的关键指标[92]。ROS能够破坏不饱和脂肪酸,减少与抗氧化相关的酶的活性,如SOD和谷胱甘肽过氧化物酶(glutathione peroxidase, GPX) [93]。Diab等[94]将大鼠暴露在RFR中,每天1 h,持续42 d,结果显示MDA含量升高了93.73%,SOD和GPX活性分别降低了25.13%和25.33%,基底膜破裂、生精细胞脱落、小管间质纤维化等结构改变。氧化应激可能是精子染色质/DNA损伤的重要因素,RFR对DNA的影响会导致顶体扭曲,可能导致无法穿透卵母细胞,造成不孕不育[95]。Pandey等[38]将小鼠置于900 MHz RFR下4 h和8 h,持续35 d,结果显示生殖细胞损伤和精子头部缺陷明显,精子发生的前减数分裂阶段停滞,表明RFR暴露诱发的氧化应激引起了生殖细胞的DNA损伤,使得周期进程变化,致使精子数量减少。

    图  1  射频辐射对雄性生殖系统的损伤机制图
    Figure  1.  Diagram of the mechanism of damage caused by radio frequency radiation to the male reproductive system

    迄今,关于RFR对生殖系统是否有影响的话题依然存在着争议。日常生活中常用的手机、笔记本电脑和WIFI等设备会产生RFR,这些辐射可能会对雄性生殖系统有负面影响,影响精子数量、精子形态、精子活力和激素水平,导致DNA损伤等。许多相关研究表明,辐射对生育能力的影响程度取决于辐射频率、SAR和辐射时间等辐射参数。辐射诱导ROS的产生、NOX浓度的变化是导致生殖参数(精子数量、存活率、活动度、形态)变化的原因。也有一些相关研究表明,暴露在辐射中没有影响或影响很小。目前的研究无法明确提出RFR影响男性生殖系统的真实机制,考虑到人们越来越多地使用手机、笔记本电脑和WIFI等设备,虽然临床研究正在确定RFR的有害影响,但必须进行机制研究,阐明RFR扰乱生殖功能的方式,从而提供合理的原因。随着EMR的不断增加,人们可能会遇到更多的健康问题,如男性不育率上升等,但目前与此相关的预防和保护措施的研究比较有限,因此,对防护措施的研究迫在眉睫。总之,未来需要更多的标准化研究,以了解EMR对生殖系统的潜在机制,并建立预防和保护策略。

  • 图  1   射频辐射对雄性生殖系统的损伤机制图

    Figure  1.   Diagram of the mechanism of damage caused by radio frequency radiation to the male reproductive system

  • [1]

    ADAH A S, ADAH D I, BIOBAKU K T, et al. Effects of electromagnetic radiations on the male reproductive system[J]. Anat J Afr, 2018, 7(1): 1152-1161. doi: 10.4314/aja.v7i1.169488

    [2]

    YADAV H, RAI U, SINGH R. Radiofrequency radiation: A possible threat to male fertility[J]. Reprod Toxicol, 2021, 100: 90-100. doi: 10.1016/j.reprotox.2021.01.007

    [3]

    YAHYAZADEH A, DENIZ Ö G, KAPLAN A A, et al. The genomic effects of cell phone exposure on the reproductive system[J]. Environ Res, 2018, 167: 684-693. doi: 10.1016/j.envres.2018.05.017

    [4]

    SINGH R, NATH R, MATHUR A K, et al. Effect of radiofrequency radiation on reproductive health[J]. Indian J Med Res, 2018, 148(S1): S92-S99.

    [5]

    AZIMZADEH M, JELODAR G. Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS[J]. Andrologia, 2019, 51(9): e13372.

    [6]

    KESARI K K, KUMAR S, NIRALA J, et al. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern[J]. Cell Biochem Biophys, 2013, 65: 85-96. doi: 10.1007/s12013-012-9414-6

    [7]

    YÜKSEL M, NAZIROĞLU M, ÖZKAYA M O. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring[J]. Endocrine, 2016, 52(2): 352-362. doi: 10.1007/s12020-015-0795-3

    [8]

    AL-BAYYARI N. The effect of cell phone usage on semen quality and fertility among Jordanian males[J]. Middle East Fertil Soc J, 2017, 22(3): 178-182. doi: 10.1016/j.mefs.2017.03.006

    [9]

    QIAO J, WANG Y, LI X, et al. A Lancet commission on 70 years of women's reproductive, maternal, newborn, child, and adolescent health in China[J]. Lancet, 2021, 397(10293): 2497-2536. doi: 10.1016/S0140-6736(20)32708-2

    [10]

    FATEHI D, ANJOMSHOA M, MOHAMMADI M, et al. Biological effects of cell-phone radiofrequency waves exposure on fertilization in mice; an in vivo and in vitro study[J]. Middle East Fertil Soc J, 2018, 23(2): 148-153. doi: 10.1016/j.mefs.2017.10.002

    [11]

    LIN Y Y, WU T, LIU J Y, et al. 1950MHz radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells[J]. Int J Environ Res Public Health, 2018, 15(1): 17.

    [12]

    WDOWIAK A, MAZUREK P A, WDOWIAK A, et al. Effect of electromagnetic waves on human reproduction[J]. Ann Agric Environ Med, 2017, 24(1): 13-18. doi: 10.5604/12321966.1228394

    [13]

    SEPEHRIMANESH M, KAZEMIPOUR N, SAEB M, et al. Proteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposure[J]. Environ Sci Pollut Res, 2017, 24(15): 13666-13673. doi: 10.1007/s11356-017-8882-z

    [14]

    ODACI E, HANCI H, YULUĞ E, et al. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality[J]. Biotech Histochem, 2016, 91(1): 9-19. doi: 10.3109/10520295.2015.1060356

    [15]

    International Telecommunication Union. Measuring digital development: facts and figures 2021[EB/OL]. [2022-12-2]. https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx.

    [16]

    KHOSHBAKHT S, MOTEJADED F, KARIMI S, et al. Protective effects of selenium on electromagnetic field-induced apoptosis, aromatase P450 activity, and leptin receptor expression in rat testis[J]. Iran J Basic Med Sci, 2021, 24(3): 322-330.

    [17]

    AZIZ H O A, ELSAYED H M, ALI M A A. Effect of mobile phone radiation on proliferation and apoptosis in rabbit testes: a histological and immunohistochemical study[J]. Egypt J Histol, 2015, 38(4): 670-678. doi: 10.1097/01.EHX.0000473760.14176.a8

    [18]

    CHEN H, QU Z, LIU W. Effects of simulated mobile phone electromagnetic radiation on fertilization and embryo development[J]. Fetal Pediatr Pathol, 2017, 36(2): 123-129. doi: 10.1080/15513815.2016.1261974

    [19]

    BANAVATH A N, SRINIVASA S N. Ameliorative effect of Punica granatum on sperm parameters in rats exposed to mobile radioelectromagnetic radiation[J]. Asian Pac J Reprod, 2021, 10(5): 225-231. doi: 10.4103/2305-0500.326720

    [20]

    ZALATA A, EL-SAMANOUDY A Z, SHAALAN D, et al. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm[J]. Int J Fertil Steril, 2015, 9(1): 129-136.

    [21]

    ZHANG G, YAN H, CHEN Q, et al. Effects of cell phone use on semen parameters: results from the MARHCS cohort study in Chongqing, China[J]. Environ Int, 2016, 91: 116-121. doi: 10.1016/j.envint.2016.02.028

    [22]

    EIBERT E, RAMIREZ M, SALIM S, et al. Testicular thermal damage and infertility from laptop use[EB/OL]. [2022-12-2]. https://ecommons.cornell.edu/handle/1813/7904.

    [23]

    BELLIENI C V, PINTO I, BOGI A, et al. Exposure to electromagnetic fields from laptop use of “laptop” computers[J]. Arch Environ Occup Health, 2012, 67(1): 31-36. doi: 10.1080/19338244.2011.564232

    [24]

    MIMA M, GREENWALD D, OHLANDER S. Environmental toxins and male fertility[J]. Curr Urol Rep, 2018, 19(7): 50. doi: 10.1007/s11934-018-0804-1

    [25]

    PANARA K, MASTERSON J M, SAVIO L F, et al. Adverse effects of common sports and recreational activities on male reproduction[J]. Eur Urol Focus, 2019, 5(6): 1146-1151. doi: 10.1016/j.euf.2018.04.013

    [26]

    MCGILL J J, AGARWAL A. The impact of cell phone, laptop computer, and microwave oven usage on male fertility[M]//DU PLESSIS S S, AGARWAL A, SABANEGH E S JR. Male Infertile. New York: Springer, 2014: 161-177.

    [27]

    DASDAG S, TAŞ M, AKDAG M Z, et al. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions[J]. Electromagn Biol Med, 2015, 34(1): 37-42. doi: 10.3109/15368378.2013.869752

    [28]

    JAFFAR F H F, OSMAN K, ISMAIL N H, et al. Adverse effects of Wi-Fi radiation on male reproductive system: a systematic review[J]. Tohoku J Exp Med, 2019, 248(3): 169-179. doi: 10.1620/tjem.248.169

    [29]

    PALL M L. Wi-Fi is an important threat to human health[J]. Environ Res, 2018, 164: 405-416. doi: 10.1016/j.envres.2018.01.035

    [30]

    KAMALI K, ATAROD M, SARHADI S, et al. Effects of electromagnetic waves emitted from 3G+ Wi-Fi modems on human semen analysis[J]. Urologia, 2017, 84(4): 209-214. doi: 10.5301/uj.5000269

    [31]

    BILGICI B, GUN S, AVCI B, et al. What is adverse effect of wireless local area network, using 2.45 GHz, on the reproductive system?[J]. Int J Radiat Biol, 2018, 94(11): 1054-1061. doi: 10.1080/09553002.2018.1503430

    [32]

    FARAG E A, YOUSRY M M. Effect of mobile phone electromagnetic waves on rat testis and the possible ameliorating role of Naringenin: A histological study[J]. Egypt J Histol, 2018, 41(1): 108-121. doi: 10.21608/EJH.2018.7526

    [33]

    NEGI P, SINGH R. Association between reproductive health and nonionizing radiation exposure[J]. Electromagn Biol Med, 2021, 40(1): 92-102. doi: 10.1080/15368378.2021.1874973

    [34]

    HOUSTON B J, NIXON B, KING B V, et al. Probing the origins of 1, 800 MHz radio frequency electromagnetic radiation induced damage in mouse immortalized germ cells and spermatozoa in vitro[J]. Front Public Health, 2018, 6: 270-311. doi: 10.3389/fpubh.2018.00270

    [35]

    BIN-MEFERIJ M M, EL-KOTT A F. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats[J]. Int J Clin Exp Med, 2015, 8(8): 12487-12497.

    [36]

    ZOHREH H, MANZARBANOO S, MANSOOREH H, et al. Investigation of the protective effects of hydro-alcoholic extract of sea buckthorn [Hippophaerhamnoides L. ] in spermatogenesis of rat after exposure of Wi-Fi radiation[J]. J Paramed Sci, 2015, 6(3): 10-17.

    [37]

    NETO F T L, VU BACH P, NAJARI B B, et al. Spermatogenesis in humans and its affecting factors[J]. Semin Cell Dev Biol, 2016, 59: 10-26. doi: 10.1016/j.semcdb.2016.04.009

    [38]

    PANDEY N, GIRI S, DAS S, et al. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice[J]. Toxicol Ind Health, 2017, 33(4): 373-384. doi: 10.1177/0748233716671206

    [39]

    LIU C, DUAN W, XU S, et al. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line[J]. Toxicol Lett, 2013, 218(1): 2-9. doi: 10.1016/j.toxlet.2013.01.003

    [40]

    GUNES S, AL-SADAAN M, AGARWAL A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility[J]. Reprod Biomed Online, 2015, 31(3): 309-319. doi: 10.1016/j.rbmo.2015.06.010

    [41]

    AITKEN R J, LEWIS S E M. DNA damage in testicular germ cells and spermatozoa. When and how is it induced? How should we measure it? What does it mean?[J]. Andrology, 2023, doi: 10.1111/ANDR.13375.

    [42]

    PANDEY N, GIRI S. Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice[J]. Toxicol Ind Health, 2018, 34(5): 315-327. doi: 10.1177/0748233718758092

    [43]

    GAUTAM R, SINGH K V, NIRALA J, et al. Oxidative stress‐mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation[J]. Andrologia, 2019, 51(3): e13201. doi: 10.1111/and.13201

    [44]

    HASAN I, AMIN T, ALAM M R, et al. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice[J]. Saudi J Biol Sci, 2021, 28(5): 2933-2942. doi: 10.1016/j.sjbs.2021.02.028

    [45]

    ALI B M H. Study the electromagnetic radiation effects on testicular function of male rats by biochemical and histopathological[J]. Eurasia J Biosci, 2020, 14(2): 3869-3873.

    [46]

    MAILANKOT M, KUNNATH A P, JAYALEKSHMI H, et al. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats[J]. Clinics (Sao Paulo), 2009, 64(6): 561-565. doi: 10.1590/S1807-59322009000600011

    [47]

    GHAFOURI-FARD S, SHOOREI H, MOHAQIQ M, et al. The role of different compounds on the integrity of blood-testis barrier: A concise review based on in vitro and in vivo studies[J]. Gene, 2021, 780: 145531. doi: 10.1016/j.gene.2021.145531

    [48]

    GERBER J, HEINRICH J, BREHM R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice[J]. Reproduction, 2016, 151(2): R15-R27. doi: 10.1530/REP-15-0366

    [49] 刘奕, 柳毅, 陈雅文, 等. 血-睾屏障损伤的影响因素及其相关机制[J]. 中华生殖与避孕杂志, 2021, 41(10): 937-942.

    LIU Y, LIU Y, CHEN Y W, et al. Influencing factors of blood-testis barrier injury and their related mechanisms[J]. Chin J Reprod Contracept, 2021, 41(10): 937-942.

    [50]

    HOU W G, ZHAO J, LI Z, et al. Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier[J]. Urology, 2012, 80(1): 225.e1-225.e6.

    [51]

    ODACI E, ÖZYILMAZ C. Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis[J]. Int J Radiat Biol, 2015, 91(7): 547-554. doi: 10.3109/09553002.2015.1031850

    [52]

    ÇETKIN M, KIZILKAN N, DEMIREL C, et al. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation[J]. Andrologia, 2017, 49(10): e12761. doi: 10.1111/and.12761

    [53]

    SHAHIN S, SINGH S P, CHATURVEDI C M. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus[J]. J Cell Physiol, 2018, 233(9): 7253-7267. doi: 10.1002/jcp.26558

    [54] 程庆, 禹刚, 王刚, 等. 4G手机射频电磁辐射阴囊暴露对成年大鼠生精能力和血-睾屏障的影响[J]. 中华男科学杂志, 2021, 27(8): 680-684.

    CHENG Q, YU G, WANG G, et al. Exposure of the scrotum to 4G cellphone radiofrequency electromagnetic radiation affects the spermatogenesis and blood-testis barrier of adult male rats[J]. Nat J Androl, 2021, 27(8): 680-684.

    [55] 陈阳, 万波, 周秀敏. SPOCK家族生物学功能的研究进展[J]. 南通大学学报(医学版), 2021, 41(5): 450-456.

    CHEN Y, WAN B, ZHOU X M. Research advance in the biological functions of SPOCK family[J]. J Nantong Univ (Med Sci), 2021, 41(5): 450-456.

    [56]

    YU G, TANG Z, CHEN H, et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3–MMP2-BTB axis in the testes of adult rats[J]. Sci Total Environ, 2020, 698: 133860. doi: 10.1016/j.scitotenv.2019.133860

    [57]

    BEHARI J, PAULRAJ R. Electromagnetic field exposure effects (ELF-EMF and RFR) on fertility and reproduction[EB/OL]. [2022-12-2]. https://bioinitiative.org/wp-content/uploads/pdfs/sec18_2012_Exposure_Effects_Fertility_Reproduction.pdf.

    [58]

    YANG M, LANG H, MIAO X, et al. Effects of paternal electromagnetic pulse exposure on the reproductive endocrine function of male offspring: a pilot study[J]. Toxicol Res (Camb), 2018, 7(6): 1120-1127. doi: 10.1039/C8TX00096D

    [59]

    SAYGIN M, ASCI H, OZMEN O, et al. Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid[J]. Environ Toxicol, 2016, 31(12): 1771-1784. doi: 10.1002/tox.22179

    [60]

    DI G, XIANG J, DONG L, et al. Testosterone synthesis in testicular Leydig cells after long-term exposure to a static electric field (SEF)[J]. Toxicology, 2021, 458: 152836. doi: 10.1016/j.tox.2021.152836

    [61]

    LIN Y, WU T, LIU J, et al. Testosterone secretion in mouse Leydig cells decreasing induced by Radiofrequency electromagnetic radiation[C]//2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). Nanjing: IEEE, 2019: 1-2.

    [62]

    OYEWOPO A O, OLANIYI S K, OYEWOPO C I, et al. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats[J]. Andrologia, 2017, 49(10): e12772. doi: 10.1111/and.12772

    [63]

    SAINI H, SHARMA M, YADAV K C, et al. Effect of 3G/4G mobile phone radiations on mice testis[J]. Poll Res, 2021: 186-190.

    [64]

    SHOKRI M, SHAMSAEI M E, MALEKSHAH A K, et al. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model[J]. Andrologia, 2020, 52(11): e13834.

    [65]

    SHAHIN S, SINGH S P, CHATURVEDI C M. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway[J]. Environ Toxicol, 2018, 33(9/10): 931-945.

    [66]

    DASDAG S, AKDAG M Z, AKSEN F, et al. Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes[J]. Bioelectromagnetics, 2003, 24(3): 182-188. doi: 10.1002/bem.10083

    [67]

    AN G, LI J, XU S, et al. Effects of 1.84 GHz radio-frequency electromagnetic field on sperm maturation in epididymis microenvironment[J]. Afr J Biotechnol, 2016, 15(22): 1002-1007. doi: 10.5897/AJB2015.14894

    [68]

    HOUSTON B J, NIXON B, MCEWAN K E, et al. Whole-body exposures to radiofrequency-electromagnetic energy can cause DNA damage in mouse spermatozoa via an oxidative mechanism[J]. Sci Rep, 2019, 9(1): 17478. doi: 10.1038/s41598-019-53983-9

    [69]

    AL-DULAMEY Q K, ISMAIL A A H, AL-JAWWADY Y A. Biophysical effect of EMR with 5GHz on male reproductive system of Mus musclus mice[J]. Rafidain J Sci, 2018, 27(4): 103-113.

    [70]

    ADEBAYO E A, ADEEYO A O, OGUNDIRAN M A, et al. Bio-physical effects of radiofrequency electromagnetic radiation (RF-EMR) on blood parameters, spermatozoa, liver, kidney and heart of albino rats[J]. J King Saud Univ Sci, 2019, 31(4): 813-821. doi: 10.1016/j.jksus.2018.11.007

    [71]

    YASEEN N J. Effects of radiofrequency electromagnetic radiation of mobile phones on sperms shape and number in male albino mice[J]. Zanco J Pure Appl Sci, 2022, 34(4): 108-115.

    [72]

    KESARI K K, AGARWAL A, HENKEL R. Radiations and male fertility[J]. Reprod Biol Endocrinol, 2018, 16(1): 118. doi: 10.1186/s12958-018-0431-1

    [73]

    JAMALUDIN N, RAZAK S S A, JAFFAR F H F, et al. The effect of smartphone’s radiation frequency and exposure duration on NADPH oxidase 5 (NOX5) level in sperm parameters[J]. Sains Malays, 2017, 46(9): 1597-1602. doi: 10.17576/jsm-2017-4609-31

    [74]

    YAHYAZADEH A, ALTUNKAYNAK B Z, KAPLAN S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field[J]. Acta Histochem, 2020, 122(1): 151467. doi: 10.1016/j.acthis.2019.151467

    [75]

    ASGHARI A, KHAKI A A, RAJABZADEH A, et al. A review on electromagnetic fields (EMFs) and the reproductive system[J]. Electron Physician, 2016, 8(7): 2655-2662. doi: 10.19082/2655

    [76]

    NARAYANAN S N, JETTI R, KESARI K K, et al. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis[J]. Environ Sci Pollut Res Int, 2019, 26(30): 30693-30710. doi: 10.1007/s11356-019-06278-5

    [77]

    ALKIS M E, AKDAG M Z, DASDAG S, et al. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones[J]. Biotechnol Biotec Equip, 2019, 33(1): 1733-1740. doi: 10.1080/13102818.2019.1696702

    [78]

    CHAITHANYA K, KUMARI P, REMA R, et al. Effect of chronic exposure to GSM 900/1800 MHZ radiofrequency radiation on general blood physiology and reproductive function in male rats[J]. Indo Am J Pharm Res, 2017, 7(11): 875-881.

    [79]

    STEPHEN S, NJOKU KELECHI L, ADEOLA A. A. The effect of electromagnetic radiation (EMR) from laptop on reproductive hormones, sperm quality and prostate specific antigen of male albino rats (Rattus norvegicus)[J]. Ecol Saf Bal Use Res, 2019, 1(19): 43-52.

    [80]

    SEPEHRIMANESH M, SAEB M, NAZIFI S, et al. Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus model[J]. Int J Biometeorol, 2014, 58(7): 1657-1663. doi: 10.1007/s00484-013-0771-7

    [81]

    ERDEMLI C, OMEROGLU S, SIRAV B, et al. Effects of 2100 MHz radio frequency radiation on ductus epididymis tissue in rats[J]. Bratisl Lek Listy, 2017, 118(12): 759-764.

    [82] 郭玲. 220 MHz 职业环境射频辐射对大鼠精子质量的影响及机制探讨[D]. 西安: 中国人民解放军空军军医大学, 2019.

    GUO L. Effects of 220 MHz radiofrequency radiation on sperm quality of rats[D]. Xi’an: Air Force Medical University, 2019.

    [83]

    DONG G, ZHOU H, GAO Y, et al. Effects of 1.5-GHz high-power microwave exposure on the reproductive systems of male mice[J]. Electromagn Biol Med, 2021, 40(2): 311-320. doi: 10.1080/15368378.2021.1891091

    [84]

    TIRPÁK F, GREIFOVÁ H, LUKÁČ N, et al. Exogenous factors affecting the functional integrity of male reproduction[J]. Life (Basel), 2021, 11(3): 213.

    [85]

    SCHUERMANN D, MEVISSEN M. Manmade electromagnetic fields and oxidative stress-biological effects and consequences for health[J]. Int J Mol Sci, 2021, 22(7): 3772. doi: 10.3390/ijms22073772

    [86]

    MEVISSEN M, SCHÜRMANN D. Is there evidence for oxidative stress caused by electromagnetic fields[EB/OL]. [2022-12-02]. https://ehtrust.org/wp-content/uploads/Newsletter-BERENIS-Special-Issue-January-2021-1.pdf.

    [87]

    NAZIROĞLU M, YÜKSEL M, KÖSE S A, et al. Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males[J]. J Membr Biol, 2013, 246(12): 869-875. doi: 10.1007/s00232-013-9597-9

    [88] 杜乐, 丁桂荣, 郭国祯. 射频电磁辐射对雄性生殖系统影响的研究进展[J]. 环境与健康杂志, 2014, 31(8): 734-737.

    DU L, DING G R, GUO G Z. Effects of radio-frequency electromagnetic radiation on male reproductive system: a review of recent studies[J]. J Environ Health, 2014, 31(8): 734-737.

    [89]

    ZOSANGZUALI M, LALREMRUATI M, LALMUANSANGI C, et al. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice[J]. Electromagn Biol Med, 2021, 40(3): 393-407. doi: 10.1080/15368378.2021.1895207

    [90]

    PINTUS E, ROS-SANTAELLA J L. Impact of oxidative stress on male reproduction in domestic and wild animals[J]. Antioxidants (Basel), 2021, 10(7): 1154. doi: 10.3390/antiox10071154

    [91]

    OSKOUEI K, KHODAHEMMATI S, SU X, et al. Cell biological effects of long-term exposure to electromagnetic field of simulated mobile phones[J]. IOP Conf Ser:Earth Environ Sci, 2022, 987(1): 012015. doi: 10.1088/1755-1315/987/1/012015

    [92]

    GUR F M, KELEŞ A İ, EROL H S, et al. The effect of 900-MHz radiofrequency electromagnetic fields during the adolescence on the histological structure of rat testis and its androgen and estrogen receptors localization[J]. Int J Radiat Res, 2021, 19(1): 135-144. doi: 10.29252/ijrr.19.1.135

    [93]

    LIU Q, SI T, XU X, et al. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats[J]. Reprod Health, 2015, 12(1): 65. doi: 10.1186/s12978-015-0062-3

    [94]

    DIAB Y A A, ALGHANNAM M A A, GOMAA R S, et al. Protective effect of vitamin d against harmful effect of cell phone radiation exposure on albino rat testis[J]. Ann Rom Soc Cell Biol, 2021, 25(6): 5119-5128.

    [95]

    ABURAWI S M, ALKAYED F, SHIBANI N, et al. Effect of mobile phone radiation on reproductive system and behavior using male albino mice[J]. Alq J Med Appl Sci, 2021, 4(1): 40-47.

  • 期刊类型引用(1)

    1. 安浩,张宴. 微塑料和三氯生对斑马鱼的神经毒性效应研究. 能源环境保护. 2023(04): 131-139 . 百度学术

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  44
  • PDF下载量:  56
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-01
  • 录用日期:  2023-06-23
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2023-08-28

目录

/

返回文章
返回