Research progress of manganese exposure on abnormal GnRH release in hypothalamus affecting reproductive function
-
摘要:
锰在机体中发挥重要的生理作用,而过量锰接触会造成神经系统和生殖系统功能损伤。下丘脑分泌的促性腺激素释放激素作为始动因子调控性腺发育、青春期起始、性腺激素释放等生殖功能,但锰损害下丘脑导致促性腺激素释放激素释放异常的机制尚不明确。吻素(Kisspeptin)、前列腺素E2、一氧化氮可作为刺激因子增加促性腺激素释放激素的释放,而γ-氨基丁酸对促性腺激素释放激素的释放起刺激或抑制作用则存在争议。基于目前的研究,锰与Kisspeptin的研究较少,与前列腺素E2、一氧化氮、γ-氨基丁酸的研究主要涉及炎症、氧化应激和神经递质传输。故本文以Kisspeptin、前列腺素E2、γ-氨基丁酸和一氧化氮为切入点,介绍了锰通过以上4种途径影响下丘脑促性腺激素释放激素释放的机制,提出下丘脑促性腺激素释放激素释放异常可能是锰调控生殖功能的机制之一,为今后预防和治疗锰引起的生殖功能损害提供新的方向。
Abstract:Manganese plays an important physiological role in the organism, and excessive manganese exposure can cause impairment of neurological and reproductive functions. Gonadotropin-releasing hormone secreted by the hypothalamus acts as an initiator to regulate reproductive functions, such as gonadal development, onset of puberty, and gonadal hormone release. But the mechanism by which manganese damages the hypothalamus leading to abnormal gonadotropin-releasing hormone release is still unclear yet. Kisspeptin, prostaglandin E2, and nitric oxide may act as stimulators to increase the release of gonadotropin-releasing hormone, while the stimulatory or inhibitory effect of γ-aminobutyric acid on the release of gonadotropin-releasing hormone is controversial. Based on current research, manganese has been less studied with Kisspeptin, and studies with prostaglandin E2, nitric oxide, and γ-aminobutyric acid mainly focused on inflammation, oxidative stress, and neurotransmitter transmission. Therefore, taking Kisspeptin, prostaglandin E2, γ-aminobutyric acid, and nitric oxide as the breakthrough points, this paper introduced the mechanism of manganese affecting the release of gonadotropin-releasing hormone in the hypothalamus through the above four pathways, and proposed that the abnormal release of gonadotropin-releasing hormone in the hypothalamus may be one of the mechanisms by which manganese regulates reproductive function, providing a new direction for the prevention and treatment of manganese-induced reproductive damage in the future.
-
Keywords:
- manganese /
- hypothalamus /
- gonadotropin-releasing hormone /
- Kisspeptin /
- prostaglandin E2 /
- γ-aminobutyric acid /
- nitric oxide
-
锰(manganese, Mn)是一种天然存在且含量丰富的元素,广泛地存在于食物、土壤、饮用水中,是多种酶的辅助因子,它在营养素代谢、骨骼形成、神经递质合成等生物过程中发挥重要作用[1-2]。但过量Mn易在脑、睾丸、肝脏、胰腺、骨骼和肾脏中积累,其中,脑是Mn毒作用的主要靶器官[3]。研究指出,Mn除了能通过血-睾屏障直接损害男(雄)性生殖系统[4],还可穿透血-脑屏障,在下丘脑内聚积,间接影响生殖功能[5]。下丘脑位于丘脑沟以下,既是中枢神经系统的重要组成部分,也是具有高级内分泌功能的中转站。下丘脑可调节促性腺激素释放激素(gonadotrophin-releasing hormone, GnRH)释放,GnRH进一步刺激促黄体生成素(luteinizing hormone, LH)和促卵泡生成素(follicle-stimulating hormone, FSH)的合成与释放,LH、FSH通过血液循环到达性腺器官,发挥促进卵泡发育、性激素释放、精子生成等功能[6-8]。尤其是GnRH的分泌广泛受激素、神经递质和神经类物质等的调控[9]。
随着Mn在工业、医疗、制造业的广泛使用,环境中Mn含量逐渐升高,增加了普通人群的暴露机会,其潜在的危害越来越不容忽视。流行病学调查研究发现,Mn尘沉积率较高的学龄儿童存在激素失衡及青春期提前的可能[10]。动物实验研究表明,过量Mn暴露的大鼠生殖功能出现异常,青春期提前[11];随着氯化锰(manganese chloride, MnCl2)浓度的增加,体外培养的下丘脑内侧基底部细胞GnRH释放呈剂量依赖性,即MnCl2浓度越高,GnRH释放增加得越明显[12]。由此可知,在Mn导致的生殖功能损伤中,下丘脑释放的GnRH可能发挥重要作用,但其机制尚不明确。目前研究多从吻素(Kisspeptin)、前列腺素E2(prostaglandin E2, PGE2)、γ-氨基丁酸(γ-aminobutyric acid, GABA)、一氧化氮(nitric oxide, NO)方面进行探索。本文欲就以上途径对Mn调控下丘脑GnRH释放异常导致生殖功能损害的可能机制进行综述。
1. Mn调控下丘脑Kisspeptin影响GnRH释放
Kisspeptin是近年来生殖领域的研究热点,它在青春期发育、生殖调控中起着关键作用。KISS-1基因编码的Kisspeptin与位于GnRH神经元上的Kisspeptin受体Kiss1r结合,从而促进GnRH及下游促性腺激素释放[13-14]。Srivastava等[15]对未成熟雌性SD大鼠进行MnCl2灌胃发现,下丘脑弓状核部位的脑Ras同源蛋白(Ras homolog enriched in brain, Rheb)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)和KISS-1表达增加,青春期发育提前。Srivastava提出:Mn诱导Rheb mRNA增多,上调下游mTOR、KISS-1的mRNA表达,最终引起GnRH释放增加。随后,该文作者进一步阐明了Mn造成GnRH升高的机制——Mn可通过胰岛素样生长因子-1(insulin-like growth factor 1, IGF-1)/蛋白激酶B(protein kinase B, AKT)/结节性硬化复合物蛋白2(tuberous sclerosis complex 2, TSC2)信号通路,增加Rheb从而激活mTOR[16]。以上结果表明,Mn至少部分通过Kisspeptin刺激青春期前大鼠下丘脑GnRH释放并诱导性早熟。
事实上,下丘脑弓状核中几乎所有的Kisspeptin神经元共同表达神经激肽B神经元和强啡肽神经元。Moore等[14]认为神经激肽B是触发GnRH脉冲的信号,Kisspeptin是驱动GnRH分泌的输出信号,强啡肽则是终止GnRH脉冲的信号。Srivastava等[15-16]的研究只涉及Kisspeptin层面。基于三种神经元共同表达的前提,后续可进一步研究神经激肽B和强啡肽在Mn致下丘脑损伤造成GnRH释放异常中的机制。
2. Mn调控下丘脑PGE2影响GnRH释放
PGE2是重要的炎症介质,可参与排卵、受精、胚胎发育等过程[17]。下丘脑星形胶质细胞旁分泌PGE2,与GnRH神经元上的前列腺素E受体1(prostaglandin E receptor 1, EP1)、前列腺素E受体2(prostaglandin E receptor 2, EP2)受体结合,从而增加细胞内Ca2+、环磷酸腺苷浓度,调节GnRH分泌[18-19]。此外,PGE2可刺激转化生长因子β产生,它能诱导伸长细胞从内皮壁缩回,促使GnRH更好释放入血[20]。
Qi等[21]在用Mn处理离体下丘脑星形胶质细胞的实验中发现,Mn会通过核转录因子E2相关因子2(nuclear factor erythroid-2-related factor 2, Nrf2)/代谢型谷氨酸受体5(metabotropic glutamate receptor 5, mGluR5)/环氧化酶-2(cyclooxygenase 2, COX-2)/PGE2信号通路干扰成年昆明小鼠GnRH分泌,其中,COX-2抑制剂预处理组的血清PGE2、GnRH水平明显低于Mn暴露组。Wu等[19]对雄性昆明小鼠腹腔注射MnCl2后发现,高剂量Mn致小鼠精子数量减少、异常精子数增加,拮抗EP1、EP2受体后血清GnRH水平降低、睾酮(testosterone, T)水平及精子数量均较高剂量Mn组增加。除此之外,Mn可诱导下丘脑IGF-1生成,IGF-1在一定程度上介导了Mn刺激的COX-2/PGE2生成,提高了GnRH神经元分泌活性,导致青春期早熟[22]。
星形胶质细胞作为Mn毒性作用的初始靶细胞,不仅分泌PGE2促进GnRH释放,同时还分泌促性腺激素抑制激素和Kisspeptin,两者对下丘脑GnRH释放分别起负向和正向调节,且体外培养的星形胶质细胞还表达GnRH受体[23]。因此,Mn损害下丘脑星形胶质细胞导致GnRH释放异常的机制中,PGE2、促性腺激素抑制激素、Kisspeptin与GnRH受体四者间的关系值得进一步研究。
3. Mn调控下丘脑GABA影响GnRH释放
GABA是一种抑制性的氨基酸类神经递质,主要与GABAA受体结合调控下丘脑GnRH的分泌[24]。Prestifilippo等[25]发现Mn增加了成年雄性大鼠下丘脑内侧基底部的GABA释放,存在GABAA受体抑制剂时GnRH明显增加。幼龄雌性大鼠MnCl2灌胃后,Mn降低了视前区-下丘脑前部的GABAA受体,刺激NO增多,促进GnRH释放,导致大鼠性发育和排卵提前;且GABAA受体激动剂的使用在很大程度上抑制了Mn造成的GnRH增加、子宫和卵巢重量改变[11]。可见,Mn降低不同发育阶段个体的GABA或GABAA受体,减少GABA与GABAA受体结合的机会,增加GnRH的释放与分泌,导致大鼠的GnRH分泌及生殖系统异常。
上述证据中的GABA和GABAA受体结合对GnRH神经元活动主要起抑制作用,但GABAA受体激活的同时也能诱导GnRH神经元去极化,并对他们的电活动具有兴奋作用[26]。然而,关于GABA对GnRH神经元是兴奋或是抑制作用目前尚无定论。Ingram等[27]报道,下丘脑急性切片中GABA对GnRH神经元的影响依赖于切面的方向,切面方向分为冠状切面、矢状切面和水平切面,其中,下丘脑冠状切面的GABA对GnRH神经元具有兴奋作用。令人惊讶的是,Yang等[11]研究中的急性脑切片采取的是冠状切面,但在Mn的作用下GABA反而抑制GnRH的释放。
4. Mn调控下丘脑NO影响GnRH释放
NO是一种关键的细胞信号分子,它可通过可溶性鸟苷酸环化酶(soluble guanylyl cyclase, sGC)/环磷酸鸟苷(cyclic guanosine monophosphate, cGMP)/蛋白激酶G(protein kinase G, PKG)途径增强GnRH的分泌[28-29]。对分离的成年雄性SD大鼠下丘脑进行MnCl2染毒发现,Mn激活了一氧化氮合酶(nitric oxide synthase, NOS)/NO系统,导致cGMP和PKG增加,从而刺激神经末梢GnRH分泌[30]。同样地,Yang等[11]对未成熟雌性大鼠MnCl2灌胃后发现,Mn也能通过NO途径刺激GnRH释放。然而,未成熟雌性SD大鼠下丘脑经MnCl2离体培养后发现,Mn并不是首先刺激NOS/NO系统增加GnRH释放,而是直接刺激NO下游的sGC和PKG,增加GnRH分泌。Lee等[31]认为:Mn2+在下丘脑中的主要作用是直接激活sGC和/或作为NO的辅助因子,从而产生cGMP并导致青春期前GnRH释放。因此,在考虑Mn是否通过NO途径刺激GnRH释放时,实验动物的性别、年龄、染毒方式、染毒剂量等因素均会对结果造成影响[32]。
5. 总结与展望
迄今为止,研究者们通过体内及体外实验证明Mn可通过NO、Kisspeptin、PGE2和GABA途径影响下丘脑GnRH释放,尤其是Mn对性发育未成熟的啮齿动物GnRH分泌具有重要影响,甚至会造成生殖激素及生殖器官异常,这为预防及防治Mn导致的生殖功能异常提供了一定科学依据。然而,目前仅有少数流行病学调查研究提示Mn暴露与GnRH失衡有关,大部分证据来源于动物实验和细胞实验,物种的差异使得研究结果外推到人群的时候需要特别谨慎,故需要更多的流行病学研究来验证这一结论。其次,尽管已有研究表明Mn可通过调控下丘脑GnRH释放影响生殖功能,但仍然存在研究方法和研究理念滞后等问题,如利用全转录组测序等新技术方面的不足,与非编码RNA、DNA甲基化等相结合的研究报道匮乏。
综上所述,即使下丘脑GnRH释放异常是Mn引起生殖功能损伤的机制之一,但Mn损害下丘脑导致GnRH释放异常的机制尚不明确,未来可以从以下角度进行思考与探索:1)Mn不仅能通过下丘脑影响GnRH释放造成生殖功能异常,同时,它还可以直接作用于生殖系统,其中谁扮演更重要的角色?2)下丘脑的神经网络极其复杂,需进一步明确Mn致下丘脑释放GnRH异常的机制。总之,为防止Mn影响生殖功能,还需做大量研究工作阐明其潜在机制。
-
[1] ERIKSON K M, ASCHNER M. Manganese: its role in disease and health[J]. Met Ions Life Sci, 2019, 19: 253-266.
[2] CHEN P, BORNHORST J B, ASCHNER M. Manganese metabolism in humans[J]. Front Biosci (Landmark Ed), 2018, 23: 1655-1679. doi: 10.2741/4665
[3] YANG H, WANG J, YANG X, et al. Occupational manganese exposure, reproductive hormones, and semen quality in male workers: a cross-sectional study[J]. Toxicol Ind Health, 2019, 35(1): 53-62. doi: 10.1177/0748233718810109
[4] QI Z, LIU Y, YANG H, et al. Protective role of m6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction[J]. Chem Biol Interact, 2021, 351: 109754.
[5] DEES W L, HINEY J L, SRIVASTAVA V K. Influences of manganese on pubertal development[J]. J Endocrinol, 2017, 235(1): R33-R42. doi: 10.1530/JOE-17-0237
[6] BOSCH E, ALVIGGI C, LISPI M, et al. Reduced FSH and LH action: implications for medically assisted reproduction[J]. Hum Reprod, 2021, 36(6): 1469-1480. doi: 10.1093/humrep/deab065
[7] ANDERSON R C, NEWTON C L, ANDERSON R A, et al. Gonadotropins and their analogs: current and potential clinical applications[J]. Endocr Rev, 2018, 39(6): 911-937. doi: 10.1210/er.2018-00052
[8] STAMATIADES G A, KAISER U B. Gonadotropin regulation by pulsatile GnRH: signaling and gene expression[J]. Mol Cell Endocrinol, 2018, 463: 131-141. doi: 10.1016/j.mce.2017.10.015
[9] HERBISON A E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons[J]. Nat Rev Endocrinol, 2016, 12(8): 452-466. doi: 10.1038/nrendo.2016.70
[10] DOS SANTOS N R, RODRIGUES J L G, BANDEIRA M J, et al. Manganese exposure and association with hormone imbalance in children living near a ferro-manganese alloy plant[J]. Environ Res, 2019, 172: 166-174. doi: 10.1016/j.envres.2019.02.021
[11] YANG X, TAN J, XU X, et al. Prepubertal overexposure to manganese induce precocious puberty through GABAA receptor/nitric oxide pathway in immature female rats[J]. Ecotoxicol Environ Saf, 2020, 188: 109898. doi: 10.1016/j.ecoenv.2019.109898
[12] LEE B, PINE M, JOHNSON L, et al. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats[J]. Reprod Toxicol, 2006, 22(4): 580-585. doi: 10.1016/j.reprotox.2006.03.011
[13] HARTER C J L, KAVANAGH G S, SMITH J T. The role of kisspeptin neurons in reproduction and metabolism[J]. J Endocrinol, 2018, 238(3): R173-R183. doi: 10.1530/JOE-18-0108
[14] MOORE A M, COOLEN L M, PORTER D T, et al. KNDy cells revisited[J]. Endocrinology, 2018, 159(9): 3219-3234. doi: 10.1210/en.2018-00389
[15] SRIVASTAVA V K, HINEY J K, DEES W L. Early life manganese exposure upregulates tumor-associated genes in the hypothalamus of female rats: relationship to manganese-induced precocious puberty[J]. Toxicol Sci, 2013, 136(2): 373-381. doi: 10.1093/toxsci/kft195
[16] SRIVASTAVA V K, HINEY J K, DEES W L. Manganese-stimulated kisspeptin is mediated by the IGF-1/akt/mammalian target of rapamycin pathway in the prepubertal female rat[J]. Endocrinology, 2016, 157(8): 3233-3241. doi: 10.1210/en.2016-1090
[17] NIRINGIYUMUKIZA J D, CAI H, XIANG W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation[J]. Reprod Biol Endocrinol, 2018, 16(1): 43. doi: 10.1186/s12958-018-0359-5
[18] FUJIOKA H, FUNABASHI T, AKEMA T. Prostaglandin E2 modulates presynaptic regulation of GnRH neurons via EP4 receptors in accordance with estrogen milieu[J]. Neuroscience, 2017, 360: 139-145. doi: 10.1016/j.neuroscience.2017.07.025
[19] WU F, YANG H, LIU Y, et al. Manganese exposure caused reproductive toxicity of male mice involving activation of GnRH secretion in the hypothalamus by prostaglandin E2 receptors EP1 and EP2[J]. Ecotoxicol Environ Saf, 2020, 201: 110712. doi: 10.1016/j.ecoenv.2020.110712
[20] HINEY J K, SRIVASTAVA V K, DEES W L. Manganese protects against the effects of alcohol on hypothalamic puberty-related hormones[J]. Life Sci, 2016, 148: 106-111. doi: 10.1016/j.lfs.2016.02.047
[21] QI Z, MI C, WU F, et al. The effect of manganese exposure on GnRH secretion via Nrf2/mGluR5/COX-2/PGE2/signaling pathway[J]. Toxicol Ind Health, 2019, 35(3): 211-227. doi: 10.1177/0748233719825720
[22] HINEY J K, SRIVASTAVA V K, DEES W L. Manganese induces IGF-1 and cyclooxygenase-2 gene expressions in the basal hypothalamus during prepubertal female development[J]. Toxicol Sci, 2011, 121(2): 389-396. doi: 10.1093/toxsci/kfr057
[23] 李良娟. MAPK-COX路径在GnRH调节星形胶质细胞PGE2表达中的作用[D]. 重庆: 西南大学, 2016. LI L J. GnRH regulates the expression of PGE2 in astrocytes by MAPK-COX pathway[D]. Chongqing: Southwest University, 2016.
[24] SILVA M S B, DESROZIERS E, HESSLER S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome[J]. eBioMedicine, 2019, 44: 582-596. doi: 10.1016/j.ebiom.2019.05.065
[25] PRESTIFILIPPO J P, FERNÁNDEZ-SOLARI J, DE LAURENTIIS A, et al. Acute effect of manganese on hypothalamic luteinizing hormone releasing hormone secretion in adult male rats: involvement of specific neurotransmitter systems[J]. Toxicol Sci, 2008, 105(2): 295-302. doi: 10.1093/toxsci/kfn135
[26] DI GIORGIO N P, BIZZOZZERO-HIRIART M, LIBERTUN C, et al. Unraveling the connection between GABA and kisspeptin in the control of reproduction[J]. Reproduction, 2019, 157(6): R225-R233. doi: 10.1530/REP-18-0527
[27] INGRAM R J, LEVERTON L K, DANIELS V C, et al. Increased GABA transmission to GnRH neurons after intrahippocampal kainic acid injection in mice is sex-specific and associated with estrous cycle disruption[J]. Neurobiol Dis, 2022, 172: 105822. doi: 10.1016/j.nbd.2022.105822
[28] CONSTANTIN S, REYNOLDS D, OH A, et al. Nitric oxide resets kisspeptin-excited GnRH neurons via PIP2 replenishment[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2012339118. doi: 10.1073/pnas.2012339118
[29] GUERRA D D, BOK R, CARI E L, et al. Effect of neuronal nitric oxide synthase serine-1412 phosphorylation on hypothalamic-pituitary-ovarian function and leptin response[J]. Biol Reprod, 2020, 102(6): 1281-1289. doi: 10.1093/biolre/ioaa025
[30] PRESTIFILIPPO J P, FERNÁNDEZ-SOLARI J, MOHN C, et al. Effect of manganese on luteinizing hormone-releasing hormone secretion in adult male rats[J]. Toxicol Sci, 2007, 97(1): 75-80. doi: 10.1093/toxsci/kfm015
[31] LEE B, HINEY J K, PINE M D, et al. Manganese stimulates luteinizing hormone releasing hormone secretion in prepubertal female rats: hypothalamic site and mechanism of action[J]. J Physiol, 2007, 578(3): 765-772. doi: 10.1113/jphysiol.2006.123083
[32] SCHMITZ C R R, EICHWALD T, FLORES M V B, et al. Sex differences in subacute manganese intoxication: Oxidative parameters and metal deposition in peripheral organs of adult Wistar rats[J]. Regul Toxicol Pharmacol, 2019, 104: 98-107. doi: 10.1016/j.yrtph.2019.03.005
-
期刊类型引用(1)
1. 丁查文,乔红. 基于Nrf2-HO-1通路探讨叶黄素对锰暴露大鼠颅脑神经损伤的保护作用. 职业与健康. 2025(09): 1180-1186 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 156
- HTML全文浏览量: 19
- PDF下载量: 34
- 被引次数: 1