2022, 39(12):1423-1429.doi:10.11836/JEOM22259
关键词: 三氯乙烯; 氧化应激; 靶器官毒性; 核因子E2相关因子2; 分子机制
三氯乙烯(trichloroethylene, TCE)是一种常见的工业有机溶剂和环境污染物,广泛应用于电子、五金等行业[1]。在职业活动中人体暴露方式主要为空气吸入,非职业暴露方式包括接触受污染的食物或水等[2]。TCE可能导致职业性三氯乙烯药疹样皮炎、肝脏和肾脏肿瘤、心血管系统和神经系统损伤等危害[3],对人群的健康造成了严重影响。
氧化应激是指受到外界有害因子的刺激时,体内的活性氧自由基迸发并积累,同时抗氧化物对积累的活性氧(reactive oxygen species, ROS)、活性氮进行清除[4]。当体内ROS自由基累积过多超出清除能力时,机体内的氧化系统与抗氧化系统失去动态平衡[5],导致ROS自由基对机体产生危害。在生理条件下,ROS在信号转导、抵御外来刺激和调节细胞活动进程等方面发挥重要作用。但过多的ROS在机体蓄积,会对脂质、蛋白质和核酸等生物大分子造成氧化损伤和功能破坏,进而导致细胞死亡和组织破坏[6]。
Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein 1, Keap1)-核因子E2相关因子2(nuclear factor-erythroid 2-related factor 2, Nrf2)-抗氧化反应原件(antioxidant response element, ARE)信号通路,简称Nrf2信号通路,可通过诱导细胞的抗氧化反应来抑制氧化应激损伤,维持细胞氧化还原稳态,具有细胞保护作用[7]。在正常状态下,Nrf2处于无活性状态,其与Keap1结合而锚定于细胞质中;当机体发生氧化应激时,Nrf2与Keap1解偶联,Nrf2转位进入细胞核并与ARE快速结合,从而调控下游靶基因的表达[8]。Nrf2通路调控的靶基因主要是II相代谢酶和抗氧化酶基因,包括血红素加氧酶1(heme oxygenase-1, HO-1)、烟酰胺腺嘌呤二核苷酸磷酸:醌氧化还原酶1(nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1, NQO1)、超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)等。HO-1可抑制游离铁血红素参与氧化应激反应,其降解产物能够抑制炎症和扩张血管,最终改善组织的血液循环[9-10]。NQO1可以催化醌类化合物还原成氢醌,再转化为水溶性物质排出体外,从而阻止ROS的产生[10]。SOD和GSH-Px是消除ROS的关键酶,而丙二醛(malondialdehyde, MDA)是由细胞膜的脂质氧化产生的,ROS、MDA、SOD和GSH-Px各自的浓度反映了细胞内的氧化应激状态[10]。
近年来有越来越多的研究表明,TCE可引起暴露人群氧化应激水平增高,而氧化应激与TCE导致的脏器损害和自身免疫反应的发生密切相关。在TCE处理后的肝脏、肾脏、心脏等部位均观察到ROS的大量积累,脂质过氧化产物的堆积和抗氧化酶的显著消耗,造成膜脂质过氧化,破坏生物膜结构与功能,引起蛋白变性、DNA降解等,导致细胞凋亡和脏器损伤[11-12]。本文以脏器损害为线索,对氧化应激在TCE所致毒效应中的机理进行综述,为TCE的毒作用机制研究和健康损害的防治提供理论依据。
TCE职业暴露与严重的肝功能障碍相关,2003年和2005年Xu等[13]对深圳市21例职业接触TCE的患者分析发现其中3例患者出现肝脏肿大、丙氨酸转氨酶(alanine aminotransferase, ALT)、天冬氨酸转氨酶(aspartate aminotransferase, AST)、总胆红素异常等症状。Hansen等[14]从1947—1989年对5553名芬兰、瑞典和丹麦暴露于TCE的工人进行随访,观察到有统计学意义的原发性肝癌标准化发病率升高,表明TCE暴露与肝脏损伤和肝癌的发生密切相关。
TCE处理小鼠后,组织病理学检查显示肝脏重量显著增加,伴有肝血管充血和扩张以及白细胞浸润,细胞核有明显的形态学改变,如染色质浓缩和空泡形成[15]。血清中肝功能指标ALT和AST升高,白蛋白水平降低[16],表明肝功能受损。肝细胞匀浆中进一步检测发现脂质过氧化水平增加,过氧化物酶体和MDA含量增加,谷胱甘肽(glutathione, GSH)显著消耗以及抗氧化酶活性改变[17]。蛋白质氧化导致结构改变从而引起膜通透性改变,引起线粒体功能障碍,导致与氧化应激相关的信号通路失衡[18]。TCE可通过抑制小鼠肝脏中Nrf2和Ho-1的表达来上调NF-κB通路[17],而NRF2可直接调节HO-1的表达来维持氧化内环境稳定,HO-1的降低会导致对体内ROS的清除能力减弱和对氧化损伤的敏感性增加[19],使氧化损伤加剧。
与上述动物研究结果相反,钟海等[20]发现高剂量TCE作用于人肝癌HepG2细胞可激活Nrf2信号通路,促进下游抗氧化酶HO-1和NQO1的表达上调,以缓解TCE所致的氧化损伤。TCE可激活半胱天冬酶(cysteinyl aspartate-specific proteinase, caspase)caspase-3,使抗凋亡基因BCL-2表达降低和促凋亡基因Bax表达增加,诱导肝脏细胞凋亡[21]。同时在人肝细胞WRL-68细胞中检测到DNA损伤标记物γ-H2AX的产生[22]和人肝癌HepG2细胞中DNA链大量断裂[23],表明TCE导致了肝脏细胞DNA损伤。而抗氧化剂N-乙酰半胱氨酸(N-acetylcysteine, NAC)的处理和敲除代谢酶细胞色素(cytochrome P450,CYP)2E1阻断TCE代谢[22],能够降低肝脏细胞的氧化应激状态,缓解TCE带来的细胞凋亡和肝脏损伤,证实氧化应激在TCE的肝脏毒性中发挥了重要作用。
人类流行病学调查结果显示长期暴露于高剂量的TCE会导致近端小管的持续变化[24]。Andrew等[25]对美国居民TCE暴露和肾癌的相关性进行分析,结果发现居民暴露与肾癌风险增加相关。Lee等[26]对80名暴露于不同浓度TCE的健康工作人员和96名中国未暴露对照进行了横断面分子流行病学研究,结果显示与对照组相比,接触TCE的工人的肾损伤分子-1(kidney injury molecule-1, KIM-1)水平显著升高。有研究发现部分接触TCE的临床患者表现出较为严重的肾脏损伤和氧化应激指标升高[27]。
Li等[28]建立了小鼠TCE致敏模型,在肾小管中观察到部分空泡变性和上皮细胞溶解,在大鼠中也观察到肾脏形态结构的扭曲,出现空泡形成、肾小管上皮坏死和扩张[29]。TCE可诱导小鼠和大鼠肾脏KIM-1水平升高[30],肾毒性标记物血尿素氮、肌酐和乳酸脱氢酶水平改变,表明机体开始出现肾细胞损伤。肾脏一氧化氮(nitric oxide, NO)、一氧化氮合酶(nitric oxide synthase, NOS)和内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)水平降低,内皮功能障碍生物标志物E选择素(E-selectin)、血管细胞黏附分子(vascular cell adhesion molecules, VCAM-1)和细胞间黏附分子(intercellular adhesion molecules, ICAM-1)水平升高,这些指标变化提示血管内皮功能障碍,肾内皮细胞受损[28]。进一步检测发现肾脏中脂质过氧化标志物MDA水平升高,蛋白质发生羰基化修饰,导致蛋白质结构和功能改变。TCE的毒性主要依赖于其生物活化过程,通过GSH偶联途径,消耗GSH,降低机体抗氧化酶水平,使氧化产物堆积,造成细胞氧化损伤[31]。抗氧化剂可抑制TCE诱导的MDA、E-selectin、VCAM-1和ICAM-1的上调,以及eNOS、NO、NOS、SOD的下调,减轻肾脏损伤,说明TCE致敏小鼠的肾损伤与肾内皮细胞的氧化应激状态有关[28]。TCE诱导的氧化应激可以通过引起单链断裂、DNA-蛋白质交联和许多其他类型的DNA碱基修饰而造成DNA损伤,诱导肿瘤抑制基因p53上调,提高下游促凋亡基因Bax的表达,激活促凋亡因子细胞色素c,导致线粒体膜通透性的破坏以及caspase-9的活化,并进一步激活caspase-3和其他下游事件,如多聚二磷酸腺苷核糖聚合酶切割和凋亡过程中的DNA断裂,引发细胞凋亡,最终细胞死亡的累积造成肾脏功能受损[32]。
心脏是胚胎发育过程中形成的第一个器官,对环境压力极为敏感[33]。多项流行病学研究表明,在胎儿发育的敏感窗口期内暴露于足够剂量的TCE时,有可能导致人类心脏缺陷[34],但总体而言,现有流行病学研究不足以确定TCE暴露和人类心脏发育毒性之间的因果关系[35-36]。
Huang等[37]用TCE处理斑马鱼胚胎观察到心脏畸形,包括球囊形心腔和心包水肿。此外,还观察到ROS的大量生成,抗氧化酶SOD活性改变,8-羟基脱氧鸟苷(8-hydroxy-2 deoxyguanosine, 8-OHDG)增加,表明DNA发生氧化损伤。ROS可参与多功能干细胞向心肌细胞分化,ROS水平升高会改变心脏神经嵴细胞分化关键基因的表达,导致胚胎发育过程中的心脏缺陷[38]。同时TCE可诱导心脏分化所必需的基因gata4、hand2、c-fos和sox9b表达改变,导致心脏发育畸形。增殖标记基因pcna和pr4al,以及细胞周期蛋白D1和D2的基因过度表达,可引起斑马鱼胚胎中心脏细胞的过度增殖,而细胞增殖失调会出现严重的心脏缺陷,如心肌肥厚和房室间隔异常[37]。TCE还可以通过氧化应激适应性激活斑马鱼的芳香族化合物受体(aryl hydrocarbon receptor, AHR)和Nrf2信号通路[39]。活化的AHR进入细胞核调节参与异源代谢的基因转录,如I相和II相代谢酶。AHR信号通路异常会扰乱人类胚胎干细胞向心肌细胞分化,并导致心脏结构和功能异常[40]。AHR通路基因cyp1b1可诱导ROS生成[41],ROS水平升高导致Keap1活化和Nrf2释放,Nrf2随后转移到细胞核并激活各种抗氧化酶和II相代谢酶基因的转录。总之,TCE所致的心脏发育畸形可能是通过ROS介导的心脏分化基因表达改变和细胞过度增殖引起的,而Nrf2和AHR在其中发挥重要的信号调控作用。
Jiang等[33]研究了TCE对人类胚胎干细胞和心肌细胞(源自人类胚胎干细胞)的影响,结果显示TCE处理后表现出显著的心脏抑制和对心肌细胞Ca2+通道通路的显著干扰,心肌祖细胞Nkx2.5/Hand1基因表达上调,心肌细胞Mhc-7/cTnT基因表达下调。可见Ca2+周转网络参与TCE心脏毒性,而TCE对心脏祖细胞向心肌细胞转变的抑制作用是人类胚胎干细胞所独有的,表明TCE对心脏发育具有物种特异性作用。王丹等[42]研究发现TCE可抑制人胚胎干细胞的心脏特异性分化,同时Ca2+信号通路相关基因被严重破坏,可能是TCE产生严重心脏毒性的原因之一。Palbykin等[43]发现TCE暴露诱导心肌成肌细胞Serca2启动子区DNA甲基化并导致s-腺苷蛋氨酸的浓度降低,而Serca2a在调节心肌细胞钙通量和维持生理心脏功能方面至关重要,这表明表观遗传机制可能在TCE介导的胚胎心脏致畸作用中发挥重要作用。
近年来有研究显示母体TCE暴露可能导致胎盘发育异常,胎盘是早产和胎儿生长受限的关键因素[44],在后代不良出生结局中起重要作用[45]。Forand等[46]对暴露于TCE的美国恩迪科特孕妇的低出生体重、早产、胎儿生长受限和出生缺陷进行了检查,并与全州的出生情况进行了比较,结果显示居住在TCE暴露地区与低出生体重和胎儿生长受限有关。Ruckart等[47]研究发现1968—1985年美国勒琼营地居住的孕妇产前暴露于TCE与后代胎龄小具有相关性。
胎盘以及胎盘衍生细胞系表达TCE代谢所需的多种酶,这些酶的存在大大增加了胎盘产生有毒TCE代谢物的风险[48]。Loch-Caruso等[49]发现喂食大鼠TCE可显著降低平均胎儿体重,但NAC预处理/共处理则改变了与发育表型延迟一致的大鼠胎盘形态[50]。此外,该研究还发现TCE染毒后大鼠胎盘中DNA碱基氧化和8-OHDG甲基化水平显著增加,谷胱甘肽转移酶和谷氨酰转肽酶的表达上升[49],这表明TCE可能通过表观遗传修饰对胎盘造成氧化损伤。
以胎盘发育的重要细胞人类绒毛外滋养层细胞系HTR-8/SVneo为研究对象,发现TCE的代谢产物S-(1,2-二氯乙烯基)-L-半胱氨酸(S-(1,2-dichlorovinyl)-l-cysteine, DCVC)处理可使细胞内的ROS和脂质过氧化产物增加,导致脂质和蛋白质氧化损伤和结构改变,脂质过氧化相关的线粒体膜去极化,耗氧量增加,线粒体质子泄漏和持续的能量耦合缺陷[51]。过量ROS诱导促炎细胞因子白介素(interleukin, IL)-6分泌增加,而IL-6的异常激活会破坏胎盘发育和成功妊娠所需的滋养层功能,使线粒体膜电位降低,导致进行性线粒体功能障碍[52],启动线粒体依赖性的细胞凋亡。抗氧化剂可降低DCVC诱导的IL-6增加和caspase-3和7的活化,表明氧化应激可介导DCVC所致绒毛外滋养层细胞的凋亡[51]。胎盘细胞需要线粒体提供的大量能量来执行正常的生理过程,因此线粒体功能障碍和细胞凋亡的异常增加会导致胎盘发育受损和胎盘疾病的发生,这可能是TCE产生胎盘发育毒性的原因[53]。
免疫系统和中枢神经系统之间存在大量的相互作用,这种相互作用可能对正常的神经发育至关重要[54],而CD4+T细胞过度活跃和促炎性细胞因子产生等免疫功能障碍是人类自闭症的一个特征。自闭症是一种常见的神经发育障碍[55-56],TCE在流行病学调查中被确定为自闭症的一个风险因素[57]。TCE还与最常见的神经退行性运动障碍帕金森病(Parkinson's disease, PD)的发展有关,少数研究已将TCE确定为PD发展过程中的一个环境或职业风险因素[58]。目前研究认为PD的发生与黑质多巴胺能神经元及其向尾状核和壳核(纹状体)的轴突投射的进行性丢失有关,而TCE暴露可导致中脑多巴胺能神经元死亡,并可重现PD的其他病理特征[59]。
研究表明发育期TCE暴露与神经毒性存在关联,TCE暴露可导致小鼠运动行为缺陷和后代平均体重改变[60]。暴露于TCE的小鼠血浆和小脑中GSH含量显著降低,氧化应激和炎症的血清生物标志物硝基酪氨酸和氯酪氨酸升高[61]。TCE可诱导小鼠海马中关键脑源性神经营养因子表达显著降低和DNA低甲基化[62],导致小鼠的神经元损伤和运动活动受损。TCE可激活大鼠大脑中的蛋白激酶LRRK2,引起黑质多巴胺神经元变性和严重缺失[59],小胶质细胞激活,以及内溶酶体功能障碍和α-突触核蛋白的异常积累[63]。在大鼠大脑中发现TCE暴露所致氧化应激会对DNA和蛋白质造成氧化损伤,导致线粒体复合物I的活性显著降低,引起线粒体功能障碍,启动凋亡信号通路[64]。妊娠期TCE暴露可导致小鼠雄性后代的自主活动增加,同时其外周CD4+T细胞过度活跃,增加了促炎细胞因子IL-17和干扰素γ(interferon, IFN-γ)的产生[61],可见CD4+T细胞过度活跃与神经发育受损之间可能存在联系。在神经发育过程中,细胞因子被证明可以调节神经元的存活和分化,而促进炎症的环境可能会导致神经病理学改变和行为缺陷。
研究发现TCE暴露与自身免疫性疾病的发病机制有关,包括系统性红斑狼疮和自身免疫性肝炎[65]。Phillips等[66]对73名暴露于TCE的工人进行了一项表观基因组相关性研究,发现TCE暴露增加了与自身免疫相关的基因甲基化变异。
用TCE处理雌性MRL+/+小鼠(一种具有自身免疫倾向的小鼠,常用于自身免疫性疾病的研究),实验研究表明TCE暴露会导致自身抗体的增加,包括抗核抗体、抗双链DNA和抗单链DNA抗体[21],可见TCE会诱导自身免疫反应。TCE处理的MRL+/+小鼠抗核抗体和4-羟基壬醛(4-hydroxynonenal, 4-HNE)特异性循环免疫复合物升高,肝脏中炎症小体NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)和caspase-1激活,促炎细胞因子IL-1β上调,并且这些效应能够被抗氧化剂NAC所抑制,同时TCE染毒诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)敲除的小鼠相比野生型小鼠炎症小体激活减少,表明TCE可通过氧化应激和iNOS介导炎症小体激活参与自身免疫反应[67]。研究发现TCE暴露可增加MRL+/+小鼠中微小RNA(microRNA, miRNA)-21和miRNA-690的表达,两者已被证实可调节核因子κB(nuclear factor-κB, NF-κB)和炎症因子IL-12的表达,并且抗氧化剂萝卜硫素可降低TCE导致的miRNA-21和miRNA-690的上调[68],表明氧化应激介导的炎症通路激活在TCE所致自身免疫反应中发挥重要作用。在暴露于TCE的小鼠肝脏中发现树突状细胞和自然杀伤细胞数量显著增加,表明TCE暴露可导致肝脏免疫细胞的扩张和激活,NAC可改善TCE导致的免疫失调,很可能是通过抑制氧化应激和NLRP3炎症体的激活来完成的[67]。
在TCE处理体外角质细胞和T细胞实验中发现,TCE及其代谢产物可降低Nrf2和Ho-1的表达,抑制Nrf2信号通路并上调NF-κB的表达,这两条转录途径之间的不平衡导致促氧化和促炎症的结果,促进IFN-γ、IL-17、IL-1β和IL-12炎症因子的分泌,并诱导caspase-3表达增加,导致细胞凋亡[69]。而这些结果都可以被抗氧化剂抑制,减少TCE带来的损伤,上调Nrf2信号通路并减少促炎细胞因子的表达。
TCE通过氧化应激引起机体内肝脏、肾脏、心脏等多种器官损害,以及神经系统、免疫系统和胚胎发育的异常。ROS的大量蓄积,抗氧化系统耗竭,导致脂质过氧化、核酸和蛋白质氧化损伤,进而引起线粒体功能障碍和细胞凋亡可能是氧化应激参与TCE靶器官毒性的主要作用模式。但目前还缺乏调控TCE诱导的氧化应激相关信号通路的研究,氧化应激在TCE所致不同毒效应中的复杂机制仍需要更深入探索。此外,Nrf2是氧化应激反应中起关键作用的转录因子,在TCE暴露的不同研究模型中,氧化应激水平均上调,但是Nrf2分子的变化规律却不完全一致,其潜在的原因和机理有待进一步探讨。提高机体的抗氧化能力,抑制TCE诱导的氧化应激反应,可能是预防和治疗TCE相关毒性损害的新思路。
[1] |
黄华, 张家祥, 朱启星. 三氯乙烯表观遗传效应在其毒性中的作用[J]. 中华劳动卫生职业病杂志, 2021, 39(5): 385-389. DOI: 10.3760/cma.j.cn121094-20200602-00313HUANG H, ZHANG J X, ZHU Q X. The role of epigenetic effect in the trichloroethylene toxicity[J]. Chin J Ind Hyg Occup Dis, 2021, 39(5): 385-389. DOI: 10.3760/cma.j.cn121094-20200602-00313 |
[2] |
李云霞, 戴宇飞. 三氯乙烯的免疫毒性[J]. 环境与职业医学, 2018, 35(1): 8-13. DOI: 10.13213/j.cnki.jeom.2018.17725LI Y X, DAI Y F. Immunotoxicity of trichloroethylene[J]. J Environ Occup Med, 2018, 35(1): 8-13. DOI: 10.13213/j.cnki.jeom.2018.17725 |
[3] |
HALIOS C H, LANDEG-COX C, LOWTHER S D, et al. Chemicals in European residences-Part I: a review of emissions, concentrations and health effects of volatile organic compounds (VOCs)[J]. Sci Total Environ, 2022, 839: 156201. DOI: 10.1016/j.scitotenv.2022.156201 |
[4] |
EMANUELLI M, SARTINI D, MOLINELLI E, et al. The double-edged sword of oxidative stress in skin damage and melanoma: from physiopathology to therapeutical approaches[J]. Antioxidants (Basel), 2022, 11(4): 612. DOI: 10.3390/antiox11040612 |
[5] |
KATTOOR A J, POTHINENI N V K, PALAGIRI D, et al. Oxidative stress in atherosclerosis[J]. Curr Atheroscler Rep, 2017, 19(11): 42. DOI: 10.1007/s11883-017-0678-6 |
[6] |
CAMPBELL E L, COLGAN S P. Control and dysregulation of redox signalling in the gastrointestinal tract[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 106-120. DOI: 10.1038/s41575-018-0079-5 |
[7] |
YAMAMOTO M, KENSLER T W, MOTOHASHI H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98(3): 1169-1203. DOI: 10.1152/physrev.00023.2017 |
[8] |
SHEN Y, LIU X, SHI J, et al. Involvement of Nrf2 in myocardial ischemia and reperfusion injury[J]. Int J Biol Macromol, 2019, 125: 496-502. DOI: 10.1016/j.ijbiomac.2018.11.190 |
[9] |
ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34: 43-63. DOI: 10.1016/j.jare.2021.06.023 |
[10] |
ROSS D, SIEGEL D. The diverse functionality of NQO1 and its roles in redox control[J]. Redox Biol, 2021, 41: 101950. DOI: 10.1016/j.redox.2021.101950 |
[11] |
FRYE R E, ROSE S, WYNNE R, et al. Oxidative stress challenge uncovers trichloroacetaldehyde hydrate-induced mitoplasticity in autistic and control lymphoblastoid cell lines[J]. Sci Rep, 2017, 7(1): 4478. DOI: 10.1038/s41598-017-04821-3 |
[12] |
ABOLAJI A O, BABALOLA O V, ADEGOKE A K, et al. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster[J]. Environ Toxicol Pharmacol, 2017, 55: 202-207. DOI: 10.1016/j.etap.2017.08.038 |
[13] |
XU X Y,YANG R X, WU N, et al. Severe hypersensitivity dermatitis and liver dysfunction induced by occupational exposure to trichloroethylene[J]. Ind health, 2009, 47(2): 107-112. |
[14] |
HANSEN J, SALLMÉN M, SELDÉN A I, et al. Risk of cancer among workers exposed to trichloroethylene: analysis of three Nordic cohort studies[J]. J Natl Cancer Inst, 2013, 105(12): 869-877. DOI: 10.1093/jnci/djt107 |
[15] |
AL-GRIW M A, ALGHAZEER R O, AL-AZREG S A, et al. Cellular and molecular etiology of hepatocyte injury in a murine model of environmentally induced liver abnormality[J]. Open Vet J, 2016, 6(3): 150-157. DOI: 10.4314/ovj.v6i3.1 |
[16] |
ABDRABOH M E, EL-MISSIRY M A, OTHMAN A I, et al. Constant light exposure and/or pinealectomy increases susceptibility to trichloroethylene-induced hepatotoxicity and liver cancer in male mice[J]. Environ Sci Pollut Res, 2022, 29(40): 60371-60384. DOI: 10.1007/s11356-022-19976-4 |
[17] |
WANG G, WAKAMIYA M, WANG J, et al. Cytochrome P450 2E1-deficient MRL+/+ mice ARE less susceptible to trichloroethene-mediated autoimmunity: involvement of oxidative stress-responsive signaling pathways[J]. Free Radical Biol Med, 2019, 143: 324-330. DOI: 10.1016/j.freeradbiomed.2019.08.022 |
[18] |
姜伟. 氧化应激介导Nrf2/HO-1与JAK1/STAT3通路参与三氯乙烯致敏小鼠肝脏损伤[D]. 合肥: 安徽医科大学, 2021. JIANG W. Oxidative stress mediates Nrf2/HO-1 and JAK1/STAT3 pathways and participates in the liver injury of mice sensitized by trichloroethylene[D]. Hefei: Anhui Medical University, 2021. |
[19] |
XIAN Z, CHOI Y H, ZHENG M, et al. Imperatorin alleviates ROS-mediated airway remodeling by targeting the Nrf2/HO-1 signaling pathway[J]. Biosci Biotechnol Biochem, 2020, 84(5): 898-910. DOI: 10.1080/09168451.2019.1710107 |
[20] |
钟海, 吴维权, 唐飞, 等. NRF2信号通路在三氯乙烯致HepG2细胞氧化应激中的作用[J]. 中国职业医学, 2020, 47(6): 660-665. ZHONG H, WU W Q, TANG F, et al. Role of NRF2 signaling pathway in trichloroethylene-induced oxidative stress in HepG2 cells[J]. China Occup Med, 2020, 47(6): 660-665. |
[21] |
WANG G, MA H, WANG J, et al. Contribution of poly(ADP-ribose)polymerase-1 activation and apoptosis in trichloroethene-mediated autoimmunity[J]. Toxicol Appl Pharmacol, 2019, 362: 28-34. DOI: 10.1016/j.taap.2018.10.012 |
[22] |
TOYOOKA T, YANAGIBA Y, IBUKI Y, et al. Trichloroethylene exposure results in the phosphorylation of histone H2AX in a human hepatic cell line through cytochrome P450 2E1-mediated oxidative stress[J]. J Appl Toxicol, 2018, 38(9): 1224-1232. DOI: 10.1002/jat.3632 |
[23] |
ALI F, KHAN A Q, KHAN R, et al. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: interception by naringenin[J]. Hum Exp Toxicol, 2016, 35(2): 147-161. DOI: 10.1177/0960327115578865 |
[24] |
LASH L H, PARKER J C, SCOTT C S. Modes of action of trichloroethylene for kidney tumorigenesis[J]. Environ health Perspect, 2000, 108(Suppl 2): 225-240. DOI: 10.1289/ehp.00108s2225 |
[25] |
ANDREW A S, LI M, SHI X, et al. Kidney cancer risk associated with historic groundwater trichloroethylene contamination[J]. Int J Environ Res Public Health, 2022, 19(2): 618. DOI: 10.3390/ijerph19020618 |
[26] |
LEE K M, ZHANG L, VERMEULEN R, et al. Alterations in immune and renal biomarkers among workers occupationally exposed to low levels of trichloroethylene below current regulatory standards[J]. Occup Environ Med, 2019, 76(6): 376-381. DOI: 10.1136/oemed-2018-105583 |
[27] |
李博栋. 氧化应激介导三氯乙烯致敏小鼠肾脏血管内皮细胞损伤[D]. 合肥: 安徽医科大学, 2018. LI B D. Oxidative stress mediates renal endothelial cell damage in mice induced by trichloroethylene sensitization[D]. Hefei: Anhui Medical University, 2018. |
[28] |
LI B, XIE H, WANG X, et al. Oxidative stress mediates renal endothelial cell damage in trichloroethylene-sensitized mice[J]. J Toxicol Sci, 2019, 44(5): 317-326. DOI: 10.2131/jts.44.317 |
[29] |
HEYDARI M, AHMADIZADEH M, ANGALI K A. Ameliorative effect of vitamin E on trichloroethylene-induced nephrotoxicity in rats[J]. J Nephropathol, 2017, 6(3): 168-173. |
[30] |
YANG L, ZHANG J, LI N, et al. Bradykinin receptor in immune-mediated renal tubular injury in trichloroethylene-sensitized mice: impact on NF-κB signaling pathway[J]. J Immunotoxicol, 2018, 15(1): 126-136. DOI: 10.1080/1547691X.2018.1532974 |
[31] |
ZHANG X Y, ELFARRA A A. Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design[J]. Expert Opin Drug Discov, 2018, 13(9): 815-824. DOI: 10.1080/17460441.2018.1508207 |
[32] |
REHMAN M U, TAHIR M, KHAN A Q, et al. Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases[J]. Br J Nutr, 2013, 110(4): 699-710. DOI: 10.1017/S0007114512005752 |
[33] |
JIANG Y, WANG D, ZHANG G, et al. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene[J]. Environ Toxicol, 2016, 31(11): 1372-1380. DOI: 10.1002/tox.22142 |
[34] |
MAKRIS S L, SCOTT C S, FOX J, et al. A systematic evaluation of the potential effects of trichloroethylene exposure on cardiac development[J]. Reprod Toxicol, 2016, 65: 321-358. DOI: 10.1016/j.reprotox.2016.08.014 |
[35] |
URBAN J D, WIKOFF D S, CHAPPELL G A, et al. Systematic evaluation of mechanistic data in assessing in utero exposures to trichloroethylene and development of congenital heart defects[J]. Toxicology, 2020, 436: 152427. DOI: 10.1016/j.tox.2020.152427 |
[36] |
LIU Z, WANG M, YU P, et al. Maternal trichloroethylene exposure and metabolic gene polymorphisms may interact during fetal cardiovascular malformation[J]. Reprod Toxicol, 2021, 106: 1-8. DOI: 10.1016/j.reprotox.2021.09.010 |
[37] |
HUANG Y, XIA Y, TAO Y, et al. Protective effects of resveratrol against the cardiac developmental toxicity of trichloroethylene in zebrafish embryos[J]. Toxicology, 2021, 452: 152697. DOI: 10.1016/j.tox.2021.152697 |
[38] |
ASOGLU M R, GABBAY-BENZIV R, TURAN O M, et al. Exposure of the developing heart to diabetic environment and early cardiac assessment: a review[J]. Echocardiography, 2018, 35(2): 244-257. DOI: 10.1111/echo.13811 |
[39] |
JIN H M, JI C, REN F, et al. AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos[J]. J Hazard Mater, 2020, 385: 121521. DOI: 10.1016/j.jhazmat.2019.121521 |
[40] |
FU H, WANG L, WANG J, et al. Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells[J]. Sci Total Environ, 2019, 651: 1038-1046. DOI: 10.1016/j.scitotenv.2018.09.247 |
[41] |
ZHOU B, WANG X, LI F, et al. Mitochondrial activity and oxidative stress functions ARE influenced by the activation of AHR-induced CYP1A1 overexpression in cardiomyocytes[J]. Mol Med Rep, 2017, 16(1): 174-180. DOI: 10.3892/mmr.2017.6580 |
[42] |
王丹, 陈涛, 王国卿, 等. 三氯乙烯对人胚胎干细胞心肌分化的影响和机制[J]. 中国应用生理学杂志, 2015, 31(3): 216-219,224. DOI: 10.13459/j.cnki.cjap.2015.03.006WANG D, CHEN T, WANG G Q, et al. The effects of trichloroethylene on cardiac differentiation in human embryonic stem cells and its mechanisms[J]. Chin J Appl Physiol, 2015, 31(3): 216-219,224. DOI: 10.13459/j.cnki.cjap.2015.03.006 |
[43] |
PALBYKIN B, BORG J, CALDWELL P T, et al. Trichloroethylene induces methylation of the Serca2 promoter in H9c2 cells and embryonic heart[J]. Cardiovasc Toxicol, 2011, 11(3): 204-214. DOI: 10.1007/s12012-011-9113-3 |
[44] |
MORGAN T K. Role of the placenta in preterm birth: a review[J]. Am J Perinatol, 2016, 33(3): 258-266. DOI: 10.1055/s-0035-1570379 |
[45] |
ILEKIS J V, TSILOU E, FISHER S, et al. Placental origins of adverse pregnancy outcomes: potential molecular targets: an executive workshop summary of the Eunice kennedy shriver national institute of child health and human development[J]. Am J Obstet Gynecol, 2016, 215(1): S1-S46. DOI: 10.1016/j.ajog.2016.03.001 |
[46] |
FORAND S P, LEWIS-MICHL E L, GOMEZ M I. Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State[J]. Environ Health Perspect, 2012, 120(4): 616-621. DOI: 10.1289/ehp.1103884 |
[47] |
RUCKART P Z, BOVE F J, MASLIA M. Evaluation of contaminated drinking water and preterm birth, small for gestational age, and birth weight at Marine Corps Base Camp Lejeune, North Carolina: a cross-sectional study[J]. Environ Health, 2014, 13: 99. DOI: 10.1186/1476-069X-13-99 |
[48] |
WU Z, MAO W, YANG Z, et al. Knockdown of CYP1B1 suppresses the behavior of the extravillous trophoblast cell line HTR-8/SVneo under hyperglycemic condition[J]. J Matern Fetal Neonatal Med, 2021, 34(4): 500-511. DOI: 10.1080/14767058.2019.1610379 |
[49] |
LOCH-CARUSO R, HASSAN I, HARRIS S M, et al. Trichloroethylene exposure in mid-pregnancy decreased fetal weight and increased placental markers of oxidative stress in rats[J]. Reprod Toxicol, 2019, 83: 38-45. DOI: 10.1016/j.reprotox.2018.11.002 |
[50] |
SU A L, LASH L H, BERGIN I L, et al. N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate trichloroethylene reproductive toxicity via metabolism in Wistar rats[J]. Arch Toxicol, 2021, 95(4): 1303-1321. DOI: 10.1007/s00204-021-02991-8 |
[51] |
ELKIN E R, HARRIS S M, LOCH-CARUSO R. Trichloroethylene metabolite S-(1, 2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line[J]. Toxicol Appl Pharmacol, 2018, 338: 30-42. DOI: 10.1016/j.taap.2017.11.006 |
[52] |
HASSAN I, KUMAR A M, PARK H R, et al. Reactive oxygen stimulation of interleukin-6 release in the human trophoblast cell line HTR-8/SVneo by the trichlorethylene metabolite S-(1, 2-Dichloro)-L-cysteine[J]. Biol Reprod, 2016, 95(3): 66. DOI: 10.1095/biolreprod.116.139261 |
[53] |
VAUGHAN O R, FOWDEN A L. Placental metabolism: substrate requirements and the response to stress[J]. Reprod Domest Anim, 2016, 51(Suppl 2): 25-35. |
[54] |
BOULANGER L M, SHATZ C J. Immune signalling in neural development, synaptic plasticity and disease[J]. Nat Rev Neurosci, 2004, 5(7): 521-531. DOI: 10.1038/nrn1428 |
[55] |
GUPTA S, AGGARWAL S, RASHANRAVAN B, et al. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism[J]. J Neuroimmunol, 1998, 85(1): 106-109. DOI: 10.1016/S0165-5728(98)00021-6 |
[56] |
MOLLOY C, MORROW A, MEINZENDERR J, et al. Elevated cytokine levels in children with autism spectrum disorder[J]. J Neuroimmunol, 2006, 172(1/2): 198-205. |
[57] |
WINDHAM G C, ZHANG L, GUNIER R, et al. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area[J]. Environ Health Perspect, 2006, 114(9): 1438-1444. DOI: 10.1289/ehp.9120 |
[58] |
BOVE F J, RUCKART P Z, MASLIA M, et al. Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: a retrospective cohort study[J]. Environ Health, 2014, 13: 68. DOI: 10.1186/1476-069X-13-68 |
[59] |
DE MIRANDA B R, GREENAMYRE J T. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease[J]. Environ Sci Processes Impacts, 2020, 22(3): 543-554. DOI: 10.1039/C9EM00578A |
[60] |
MEADOWS J R, PARKER C, GILBERT K M, et al. A single dose of trichloroethylene given during development does not substantially alter markers of neuroinflammation in brains of adult mice[J]. J Immunotoxicol, 2017, 14(1): 95-102. DOI: 10.1080/1547691X.2017.1305021 |
[61] |
BLOSSOM S J, MELNYK S B, LI M, et al. Inflammatory and oxidative stress-related effects associated with neurotoxicity ARE maintained after exclusively prenatal trichloroethylene exposure[J]. NeuroToxicology, 2017, 59: 164-174. DOI: 10.1016/j.neuro.2016.01.002 |
[62] |
BLOSSOM S J, MELNYK S B, SIMMEN F A. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice[J]. Environ Sci Processes Impacts, 2020, 22(3): 583-594. DOI: 10.1039/C9EM00514E |
[63] |
DE MIRANDA B R, CASTRO S L, ROCHA E M, et al. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease[J]. Neurobiol Dis, 2021, 153: 105312. DOI: 10.1016/j.nbd.2021.105312 |
[64] |
LIU M, SHIN E J, DANG D K, et al. Trichloroethylene and Parkinson’s disease: risk assessment[J]. Mol Neurobiol, 2018, 55(7): 6201-6214. DOI: 10.1007/s12035-017-0830-x |
[65] |
KHAN M F, WANG G. Environmental agents, oxidative stress and autoimmunity[J]. Curr Opin Toxicol, 2018, 7: 22-27. DOI: 10.1016/j.cotox.2017.10.012 |
[66] |
PHILLIPS R V, RIESWIJK L, HUBBARD A E, et al. Human exposure to trichloroethylene is associated with increased variability of blood DNA methylation that is enriched in genes and pathways related to autoimmune disease and cancer[J]. Epigenetics, 2019, 14(11): 1112-1124. DOI: 10.1080/15592294.2019.1633866 |
[67] |
WANG H, WANG G, LIANG Y, et al. Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity[J]. Free Radical Biol Med, 2019, 143: 223-231. DOI: 10.1016/j.freeradbiomed.2019.08.014 |
[68] |
BANERJEE N, WANG H, WANG G, et al. Differential expression of miRNAs in trichloroethene-mediated inflammatory/autoimmune response and its modulation by sulforaphane: delineating the role of miRNA-21 and miRNA-690[J]. Front Immunol, 2022, 13: 868539. DOI: 10.3389/fimmu.2022.868539 |
[69] |
WANG G, WANG J, LUO X, et al. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity[J]. PLoS One, 2014, 9(6): e98660. DOI: 10.1371/journal.pone.0098660 |
[基金项目] 国家自然科学基金项目(81903361)
[作者简介]
[收稿日期] 2022-06-27
引用格式
赵金枫,
颜士玉,
王瑞, 等.
氧化应激在三氯乙烯所致毒性效应中的作用[J].环境与职业医学,
2022, 39(12): 1423-1429.
doi:10.11836/JEOM22259.
ZHAO Jinfeng , YAN Shiyu , WANG Rui , HAN Yuqing , PAN Yao . Role of oxidative stress in trichloroethylene-induced toxicity.Journal of Environmental & Occupational Medicine, 2022, 39(12): 1423-1429. doi:10.11836/JEOM22259.