陈艳丽, 张霖, 晏彪. 姜黄素对邻苯二甲酸二丁酯致幼鼠学习记忆下降的改善作用[J]. 环境与职业医学, 2019, 36(11): 1049-1054. DOI: 10.13213/j.cnki.jeom.2019.19345
引用本文: 陈艳丽, 张霖, 晏彪. 姜黄素对邻苯二甲酸二丁酯致幼鼠学习记忆下降的改善作用[J]. 环境与职业医学, 2019, 36(11): 1049-1054. DOI: 10.13213/j.cnki.jeom.2019.19345
CHEN Yan-li, ZHANG Lin, YAN Biao. Ameliorating effect of curcumin on decreased learning and memory induced by dibutyl phthalate in young mice[J]. Journal of Environmental and Occupational Medicine, 2019, 36(11): 1049-1054. DOI: 10.13213/j.cnki.jeom.2019.19345
Citation: CHEN Yan-li, ZHANG Lin, YAN Biao. Ameliorating effect of curcumin on decreased learning and memory induced by dibutyl phthalate in young mice[J]. Journal of Environmental and Occupational Medicine, 2019, 36(11): 1049-1054. DOI: 10.13213/j.cnki.jeom.2019.19345

姜黄素对邻苯二甲酸二丁酯致幼鼠学习记忆下降的改善作用

Ameliorating effect of curcumin on decreased learning and memory induced by dibutyl phthalate in young mice

  • 摘要: 背景 邻苯二甲酸二丁酯(DBP)是一类典型的邻苯二甲酸酯类污染物,流行病学研究与动物实验表明,DBP可引起受试动物的神经行为学改变,其机制可能与细胞外调节蛋白激酶(ERK)在海马神经元中的表达相关。此外,姜黄素(Cur)最近因其在治疗各种中枢神经系统疾病中的积极作用而受到广泛关注,但其对DBP致幼鼠学习记忆下降的影响及作用机制尚不清楚。

    目的 通过检测Cur对DBP暴露昆明种幼鼠脑海马组织氧化应激水平、ERK通路相关蛋白表达量的影响,探讨其对DBP致幼鼠学习记忆下降的作用及机制。

    方法 雄性昆明种幼鼠32只,随机分成4组:生理盐水组、50mg/(kg·d)DBP组、2.5mg/(kg·d)Cur组、DBP+Cur组,染毒周期28 d,进行Morris水迷宫实验检测各组幼鼠的逃避潜伏期,取脑海马组织检测活性氧(ROS)、丙二醛(MDA)、总抗氧化能力(T-AOC)水平,以及ERK通路相关蛋白、磷酸化ERK(p-ERK)、脑损伤早期神经细胞蛋白(c-Fos、c-Jun)的水平,并分析脑海马CA1区病理学变化。

    结果 与对照组比较,DBP组幼鼠潜伏期延长为(46.96±4.37)s(P=0.007),脑海马组织ROS、MDA水平分别上升为(6 387.00±84.80)U/孔、(1.65±0.10)μmoL/g(以蛋白计,后同)(P=0.006,P=0.015),T-AOC水平下降为(0.55±0.05)U/mg(P=0.016),p-ERK、c-Fos及c-Jun表达水平上调(P=0.002,P=0.001,P=0.003),且海马组织HE切片显示,CA1区出现一定程度的病理学改变;加入Cur处理后,与DBP组比较,DBP+Cur组幼鼠潜伏期降低为(37.79±5.72)s(P=0.048),脑海马组织ROS、MDA水平分别下降为(5 934.80±38.07)、(1.10±0.08)μmoL/g(P=0.032,P=0.014),p-ERK、c-Fos及c-Jun表达水平下调(P=0.040,P=0.009,P=0.008),且脑海马CA1有病理学改变的细胞数量减少。

    结论 Cur在一定程度上可改善DBP引起的学习记忆下降,且作用机制可能与其降低氧化应激水平、ERK通路相关蛋白的表达有关。

     

    Abstract: Background Dibutyl phthalate (DBP) is a class of typical phthalate ester pollutants. Epidemiological studies and animal experiments have shown that DBP can cause neurobehavioral changes in animals, and the mechanism may be related to the expression of extracellular regulated protein kinase (ERK) in hippocampal neurons. In addition, curcumin (Cur) has attracted much attention recently because of its active role in the potential treatment of various central nervous diseases, but its effect on learning and memory impairment induced by DBP remains unclear.

    Objective This experiment detects the effects of Cur on the oxidative stress levels and expressions of ERK pathway related proteins in hippocampus of KM young mice exposed to DBP, and explores the effects of Cur on decreased learning and memory induced by DBP and the underlying mechanism.

    Methods Thirty-two young male KM mice were randomly divided into four groups:saline group, 50 mg/(kg·d) DBP group, 2.5 mg/(kg·d) Cur group, and DBP+Cur group. After 28 consecutive days of exposure, the escape latencies of the experimental groups were tested by Morris water maze; reactive oxygen species (ROS), malondialdehyde (MDA), and total antioxidant capacity (T-AOC) in hippocampus were determined; the levels of ERK pathway related protein, phosphorylated-ERK (p-ERK), and early brain injury neurofilament proteins (c-Fos and c-Jun) were detected by Western blotting; the pathological alterations in the CA1 area of hippocampus were observed after HE staining.

    Results Compared with the control group, the escape latency of young mice in the DBP group was prolonged to (46.96±4.37)s (P=0.007); the levels of ROS and MDA in brain was increased to (6 387.00±84.80) U/well and (1.65±0.10) μmoL/g (in protein) (P=0.006, P=0.015), respectively; the level of T-AOC was decreased to (0.55±0.05) U/mg (P=0.016); the expression levels of p-ERK, c-Fos, and c-Jun in the hippocampus were increased significantly (P=0.002, P=0.001, P=0.003); the HE stained specimens of hippocampal tissues showed identifiable pathological changes in CA1. After the Cur treatment, compared with the DBP group, the escape latency of the DBP+Cur group was decreased to (37.79±5.72) s (P=0.048); the levels of ROS and MDA were decreased to (5 934.80±38.07) and (1.10±0.08) μmoL/g (in protein) (P=0.032, P=0.014), respectively; the expression levels of p-ERK, c-Fos, and c-Jun were decreased (P=0.040, P=0.009, P=0.008); less cells with pathological changes were observed in hippocampal CA1.

    Conclusion Cur can ameliorate the effects of decreased learning and memory induced by DBP, and the mechanism may be related to the down-regulated oxidative stress and ERK pathway related protein expression levels.

     

/

返回文章
返回