Dibutyl phthalate aggravated allergic asthma through endoplasmic reticulum stress in mice
-
摘要:背景
邻苯二甲酸二丁酯(DBP)是使用最为普遍的塑化剂之一,有证据表明接触DBP与过敏性哮喘患病风险增加密切相关。然而,DBP暴露促发过敏性哮喘的作用机制还未明确,亟待研究。
目的探讨内质网应激在邻苯二甲酸二丁酯加重小鼠过敏性哮喘中的作用。
方法32只雄性C57BL/6J小鼠随机分为4组,每组8只:对照组、哮喘模型组[卵清蛋白(OVA)]、OVA+40 mg·kg−1 DBP暴露组(OVA+DBP)和OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-苯基丁酸(4-PBA)组(OVA+DBP+4-PBA)。对照组在第21、35、42、49天进行腹腔注射生理盐水,第54~60天进行每天30 min的无菌生理盐水雾化。哮喘模型组小鼠分别于第21、35、42、49天腹腔注射0.3 mL OVA,第54~60天使用1% OVA溶液雾化激发建立过敏性哮喘小鼠模型。OVA+DBP组采用与OVA组相同处理方式构建哮喘模型,并从第1~53天口服暴露40 mg·kg−1 DBP,第54~60天进行1% OVA溶液雾化激发。为验证内质网应激在DBP加重过敏性哮喘中的作用,在OVA+DBP组处理的基础上第1~53天每两天腹腔注射50 mg·kg−1的4-PBA作为OVA+DBP+4-PBA组。通过苏木精和伊红(HE)和过碘酸雪夫(PAS)染色观察肺组织气道重塑、炎症细胞浸润以及气道黏液增生等病理改变;使用酶联免疫吸附测定(ELISA)法检测血清免疫球蛋白E(T-IgE)和卵清蛋白特异性免疫球蛋白E(OVA-IgE),以及肺泡灌洗液(BALF)中白细胞介素(IL)-4、IL-5、IL-13和IL-17A含量;通过免疫组织化学检测肺组织内质网应激相关蛋白肌醇需求酶1α(IRE1α)、蛋白激酶R样内质网激酶(PERK)和激活转录因子6(ATF6)表达水平。
结果与对照组小鼠相比,OVA组小鼠表现出了明显的过敏性哮喘样症状,包括肺组织炎细胞浸润和炎症因子增多,气道重塑和黏液增生等。与OVA组小鼠相比,OVA+DBP组小鼠出现更严重的病理学改变且血清T-IgE和OVA-IgE水平进一步升高(
P <0.01),BALF中Th2(IL-4、IL-5、IL-13)和Th17(IL-17A)细胞因子水平增加(P <0.01);内质网应激相关蛋白IRE1α、PERK和ATF-6的表达加剧上升(P <0.01)。此外,与OVA+DBP组相比,OVA+DBP+4-PBA组小鼠肺组织内质网应激相关蛋白IRE1α、PERK和ATF-6的表达下调(P <0.01),BALF中细胞因子IL-4、IL-5、IL-13 和IL-17A以及血清中T-IgE和OVA-IgE水平降低(P <0.01),气道重塑和黏液增生得到明显改善。结论DBP长期暴露可通过激活内质网应激通路加重过敏性哮喘。这种恶化作用伴随着免疫球蛋白IgE水平的增加、Th2和Th17细胞因子的释放,进而导致肺组织病理学改变,影响肺部功能。
Abstract:BackgroundDibutyl phthalate (DBP) is one of the most commonly used plasticizers, and has been found to relate to allergic asthma. However, mechanisms behind the phenomenon linking DBP and allergic asthma are still not well comprehended.
ObjectiveTo investigate the role of endoplasmic reticulum stress in DBP-exacerbated allergic asthma.
MethodsThirty-two male mice were divided into four groups at random, eight mice in each group: control group, allergic asthma model group (ovalbumin, OVA), OVA+40 mg·kg−1 DBP exposure group (OVA+DBP), and OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-phenyl butyric acid (4-PBA) group (OVA+DBP+4-PBA). The control group mice were treated with saline via intraperitoneal injection on day 21, 35, 42, and 49, and atomized saline for 30 min per day from day 54 to 60. The OVA group mice were injected with 0.3 mL OVA sensitizing solution via intraperitoneal injection on day 21, 35, 42, and 49, and atomized with 1% OVA solution from day 54 to 60. The OVA+DBP group was treated in the same way as the OVA group to build an allergic asthma model, and was orally exposed to 40 mg·kg−1 DBP from day 1 to 53, plus atomized with 1% OVA solution from day 54 to 60. In order to verify the role of endoplasmic reticulum stress in DBP-exacerbated allergic asthma, 4-PBA was injected intraperitoneally every 2 d from day 1 to 53 in the OVA+DBP+4-PBA group mice. The pathological changes such as airway remodeling, inflammatory cell infiltration, and airway mucous hyperplasia in lung tissues were observed after hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining. The contents of total immunoglobulin E (T-IgE) and ovalbumin immunoglobulin E (OVA-IgE) levels in serum, and interleukin (IL)-4, IL-5, IL-13, and IL-17A in alveolar lavage fluid (BALF) were detected by Enzyme-Linked ImmunoSorbent Assay(ELISA). The expression levels of endoplasmic reticulum stress-related proteins including inositol-requiring enzyme 1α (IRE1α), protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) were detected by immunohistochemistry.
ResultsCompared to the control mice, the OVA mice showed significant asthma-like symptoms, including inflammatory cell infiltration, increased inflammatory cytokines, airway remodeling, and mucous hyperplasia. Compared to the OVA group, long-term exposure to DBP aggravated airway pathological changes in the OVA+DBP mice, and increased the serum T-IgE and OVA-IgE levels (
P <0.01), the Th2 (IL-4, IL-5, IL-13) and Th17 (IL-17A) cytokines in BALF (P <0.01), and the expression levels of endoplasmic reticulum stress-related proteins IRE1α, PERK and ATF-6 (P <0.01). In addition, after the 4-PBA treatment, it was found that compared with the OVA+DBP group, the expression levels of endoplasmic reticulum stress-related proteins (IRE1α, PERK and ATF-6) were down-regulated in the OVA+DBP+4-PBA group (P <0.01), the levels of cytokines (IL-4, IL-5, IL-13, and IL-17A) in BALF and T-IgE and OVA-IgE in serum were decreased (P <0.01), and airway remodeling and mucous hyperplasia were significantly alleviated.ConclusionLong-term exposure to DBP could aggravate allergic asthma by activating the endoplasmic reticulum stress pathway. This worsening effect is accompanied by the increase of immunoglobulin IgE levels and the release of Th2 and Th17 cytokines, which in turn leads to lung histopathological changes that affect lung function.
-
目前,过敏性哮喘患病率持续增加,成为影响全球约20%人口的公共健康问题[1]。环境化学物质暴露,如邻苯二甲酸酯等塑化剂,已被发现与过敏性哮喘患病风险增加密切相关[2]。邻苯二甲酸二丁酯(dibutyl phthalate, DBP)作为最常使用的增塑剂,广泛应用于儿童玩具、化妆品、食品包装、纺织品和建筑材料等领域,出现于日常生活中[3]。DBP与塑料载体的结合力较弱,很容易通过饮食摄入、吸入和皮肤途径进入人体,造成健康危害。流行病学研究发现,DBP等邻苯二甲酸酯的暴露可影响机体免疫系统,增加过敏性哮喘等过敏性疾病的发病风险[4]。动物实验研究也发现,DBP长期暴露可作为免疫佐剂在过敏性哮喘恶化过程中发挥重要作用[5]。然而,DBP暴露增加过敏性哮喘发生和发展的作用机制还未明确,亟待研究。
内质网应激被发现是多种过敏性疾病的重要调节因子,恢复内质网应激平衡可能是治疗过敏性疾病的有效靶点[6]。机体感知和响应内质网应激包括三个重要的传感器蛋白,包括肌醇需求酶1α(inositol-requiring enzyme 1α, IRE1α)、蛋白激酶R样内质网激酶(protein kinase R-like endoplasmic reticulum kinase, PERK)和激活转录因子6(activating transcription factor 6, ATF6)。研究发现,通过减少内质网应激标记物的产生,抑制未折叠蛋白反应的激活,可有效缓解气道炎症[7]。此外,过敏性哮喘患者肺组织中内质网应激水平显著增加,并与嗜酸性粒细胞和嗜中性粒细胞炎症呈正相关,参与过敏性哮喘病程的发展[8]。4-苯基丁酸(4-phenyl butyric acid, 4-PBA)是一种低分子量脂肪酸,主要通过阻止蛋白质异常聚集,促进蛋白质折叠,是内质网应激的有效抑制剂[9]。本研究通过建立DBP暴露加重小鼠过敏性哮喘样症状动物模型,检测肺组织中内质网应激信号通路的变化;同时,通过内质网应激抑制剂4-PBA的使用,揭示内质网应激在DBP加重过敏性哮喘的作用。
1. 对象与方法
1.1 实验动物与暴露
研究使用购买于湖北省实验动物研究中心的雄性C57BL/6J小鼠(10周龄,20~22 g)。32只小鼠随机分为4组,每组8只:(1)对照组、(2)哮喘模型组[卵清蛋白(ovalbumin, OVA)]、(3)OVA+40 mg·kg−1 DBP暴露组(OVA+DBP)和(4)OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组(OVA+DBP+4-PBA)。对照组在第21、35、42、49天进行腹腔注射生理盐水,第54~60天进行每天30 min的无菌生理盐水雾化。OVA组小鼠分别于第21、35、42、49天腹腔注射0.3 mL OVA,第54~60天使用1% OVA溶液雾化激发建立过敏性哮喘小鼠模型。OVA+DBP组采用与OVA组相同处理方式构建哮喘模型,并从第1~53天口服暴露40 mg·kg−1 DBP,第54~60天进行1% OVA溶液雾化激发。为了验证内质网应激在DBP加重过敏性哮喘中的作用,在OVA+DBP组处理的基础上通过第1~53天每两天腹腔注射50 mg·kg−1的4-PBA作为OVA+DBP+4-PBA组(图1)。本实验通过武汉科技大学医学伦理委员会的批准(IACUC-202058),验动物饲养于武汉科技大学实验动物中心,严格遵循国家有关实验动物管理和使用的规定。
1.2 主要试剂
本研究使用的主要试剂包括DBP(>99%)、OVA、4-PBA(≥99%),购买于美国Sigma公司。
1.3 血清免疫球蛋白检测
待实验暴露完成后,小鼠麻醉后心脏采血,静置离心(250×g,10 min)分离血清。血清中总免疫球蛋白E(immunoglobulin E, T-IgE)水平的测定按照T-IgE ELISA试剂盒(Mouse IgE Uncoated ELISA Kit,美国eBioscience)的说明书步骤进行;血清中卵清蛋白特异性疫球蛋白E(OVA-IgE)水平的测定按照OVA-IgE ELISA试剂盒[小鼠卵清蛋白特异性IgE抗体(OVA-sIgE)ELISA试剂盒,中国上海酶联生物]的说明书步骤进行。
1.4 肺泡灌洗液中细胞因子检测分析
小鼠麻醉后进行气管插管,向小鼠肺组织灌入无菌生理盐水,充分接触后抽离肺泡灌洗液(bronchoalveolar lavage fluid, BALF)。经4 ℃离心(250×g,10 min)取肺泡灌洗液上清液。BALF中的Th2型[白细胞介素(interleukin, IL)-4、IL-5、IL-13]和Th17型(IL-17A)细胞因子水平分别按照ELISA试剂盒(Mouse IL-4、IL-5、IL-13、IL-17A Uncoated ELISA Kit,美国eBioscience)的说明书步骤进行。
1.5 肺组织病理学观察和免疫组织化学分析
将各组小鼠肺组织完全浸润于固定液48 h,然后经过切片(5 μm)、粘片、脱蜡、染色、脱水、透明和封片等处理,最后进行苏木精和伊红染色(hematoxylin-eosin staining, HE)和过碘酸雪夫染色(periodic acid-Schiff stain, PAS)染色。使用光学显微镜对各组切片染色结果进行拍照和分析,确定DBP暴露后模型小鼠肺组织病理学改变。此外,本研究采用免疫组织化学染色方法对小鼠肺组织中IRE1α、PERK和ATF-6蛋白进行检测和分析。其中使用抗IRE1α(稀释比1∶100,美国Abcam)、抗PERK(稀释比1∶50,美国Abcam)、抗ATF6(稀释比1∶100,美国Abcam)作为一抗抗体,于4 ℃下孵育肺组织切片过夜;37 °C下孵育二抗(稀释比1∶
5000 ,中国碧云天生物技术)30 min后用3,3′-二氨基联苯胺(3,3′-diaminobenzidine, DAB)显色试剂显色。在DM4000B显微镜(徕卡微系统有限公司,德国)下观察小鼠肺组织免疫组化染色结果,用Image Pro Plus 6.0软件分析目标蛋白平均光密度。1.6 统计学分析
实验数据采用均数±标准误表示。采用GraphPad Prism 8.0软件统计分析,组间数据对比采用单因素方差分析和Tukey多重比较,P<0.05表示差异具有统计学意义。
2. 结果
2.1 DBP暴露加重过敏性哮喘小鼠模型的病理改变
与对照组小鼠相比,染色结果发现OVA组小鼠肺组织中出现明显的炎症细胞浸润、气道重塑,且出现黏液增生,见图2。与OVA组小鼠相比,组织炎症评分和黏液增生分析结果均显示,DBP长期暴露会加重哮喘模型小鼠肺组织炎症细胞浸润,以及气道重塑和黏液增生,且差异均有统计学意义(图2B和D,P<0.01)。然而,与OVA+DBP组小鼠相比,4-PBA处理小鼠(OVA+DBP+4-PBA组)肺组织炎细胞浸润、气道重塑和黏液增生获得明显改善(图2B~D,P<0.01)。
图 2 DBP暴露加重过敏性哮喘小鼠模型的病理改变Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A:HE染色,黑色箭头表示气道重塑,红色箭头表示细胞浸润;B:各组肺组织HE染色炎症评分结果;C:PAS染色结果,黏液增生为紫红色染色;D:各组肺组织PAS染色黏液增生分析结果。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=4。Figure 2. DBP exposure exacerbates pulmonary pathological changes in allergic asthma miceControl: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A: HE staining, black arrow indicates airway remodeling, and red arrow indicates cell infiltration; B: Results of inflammation score in lung tissues of each group; C: PAS staining results, mucous hyperplasia is stained purple red; D: Results of PAS staining mucous hyperplasia analysis in lung tissues of each group. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=4.2.2 DBP暴露升高过敏性哮喘小鼠模型中T-lgE和OVA-IgE水平
血清免疫球蛋白检测结果发现,OVA组小鼠血清T-IgE和OVA-IgE含量与对照组小鼠相比均增加,且差异均有统计学意义(P<0.01),见图3。长期口服DBP暴露后可增加哮喘模型组小鼠血清T-IgE和OVA-IgE水平,差异均有统计学意义(P<0.01)。此外,与OVA+DBP组相比,内质网应激抑制剂4-PBA的使用可降低OVA+DBP+4-PBA组小鼠血清T-IgE和OVA-IgE水平,且差异均有统计学意义(P<0.01)。
图 3 DBP暴露升高过敏性哮喘小鼠血清T-lgE与OVA-IgE水平Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A:血清T-lgE水平;B:血清OVA-lgE水平。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=8。Figure 3. DBP exposure increases OVA-induced T-lgE and OVA-IgE levels in serumControl: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A: Serum T-lgE level; B: Serum OVA-lgE level. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=8.2.3 DBP暴露升高过敏性哮喘模型小鼠肺泡灌洗液中细胞因子含量
如图4所示,与对照组相比,OVA组中典型Th2型细胞因子IL-4、IL-5、IL-13以及Th17型细胞因子IL-17A表达水平升高,且差异有统计学意义(P<0.01);与OVA组相比,DBP暴露会进一步增加这些细胞因子的表达水平,造成肺组织炎症水平增加,且差异有统计学意义(P<0.01);通过4-PBA处理后发现,抑制内质网应激可缓解DBP暴露对哮喘模型小鼠肺组织细胞因子IL-4、IL-5、IL-13、IL-17A表达的加重作用(P<0.01)。
图 4 DBP暴露加剧过敏性哮喘小鼠肺泡灌洗液中细胞因子含量Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A~D:IL-4、IL-5、IL-13和IL-17A水平。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=8。Figure 4. DBP exposure aggravates cytokine levels in BALF of allergic asthma miceControl: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A-D: IL-4, IL-5, IL-13, and IL-17A levels, respectively. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=8.2.4 DBP暴露促进过敏性哮喘模型小鼠肺组织内质网应激相关蛋白表达
通过内质网应激关键蛋白免疫组织化学检测发现,与对照组小鼠相比,OVA诱导肺组织IRE1α、PERK和ATF-6蛋白的表达增加,且差异均有统计学意义(P<0.01);DBP暴露可进一步加剧过敏性哮喘小鼠肺组织中IRE1α、PERK和ATF-6的表达(P<0.01)。此外,4-PBA的使用可有效降低小鼠肺组织中内质网应激关键蛋白IRE1α、PERK和ATF-6的表达水平(P<0.01)。见图5。
图 5 DBP暴露对过敏性哮喘模型小鼠肺组织内质网应激相关蛋白表达的影响Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A、C、E:肺组织IRE1α、PERK、ATF-6免疫组织化学染色结果;B、D、F:肺组织IRE1α、PERK、ATF-6平均光密度分析结果。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=4。Figure 5. Effects of DBP exposure on the expression of endoplasmic reticulum stress-related proteins in allergic asthma miceControl: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A, C, E: Immunohistochemical staining results of IRE1α, PERK, and ATF-6 in lung tissues, respectively; B, D, F: Mean optical density analysis results of IRE1α, PERK, and ATF-6 in lung tissues, respectively. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=4.3. 讨论
DBP是一种被广泛用作增塑剂的环境污染物,长期暴露于DBP可以通过免疫佐剂作用加重过敏原所诱发的过敏性疾病[10,11]。Franken等[12]的研究表明,在418名14~15岁的青少年尿液样本中,邻苯二甲酸单正丁酯(DBP的代谢物)显著升高,且被诊断为与哮喘的发病呈正相关。此外,研究发现吸入含有DBP的气体可募集肺组织中的巨噬细胞,诱发肺组织的免疫反应,造成肺功能下降[13]。美国环境保护署推荐的人群DBP接触限值为0.1 mg·kg·d−1,但实际情况是多种PAEs的长期混合暴露,普通人群每天的接触邻苯二甲酸酯总量预计超过1 g,即约20 mg·kg·d−1,经常食用快餐的人群、接受透析治疗的患者可能更高;此外,多项DBP呼吸毒性实验研究均发现40 mg·kg·d−1为有效暴露浓度[14–15]。因此,为了揭示内质网应激在DBP加重过敏性哮喘中的作用机制,本研究DBP使用的剂量为50 mg·kg·d−1。
过敏性哮喘是由多种细胞释放的因子引发的I型超敏反应,I型超敏反应是由过敏原特异性IgE诱导的免疫反应。Th2型细胞因子如IL-4在I型超敏反应的发生中起着特别重要的调节作用。此外,IL-17可以增强中性粒细胞气道炎症和Th2细胞介导的嗜酸性气道炎症[16]。OVA广泛用于过敏性哮喘实验动物模型的构建,通过联合氢氧化铝作为佐剂的致敏阶段以及1% OVA溶液的雾化激发两个阶段可以诱导小鼠产生过敏性哮喘样症状,包括血清T-IgE升高、以Th2型炎症为主的气道炎症反应、支气管气道黏液增生和气道重塑等病理改变,以及气道高反应性[17–18]。本研究发现,长期DBP暴露可增加OVA诱导的小鼠肺部Th2型和Th17型细胞因子的表达,促进B细胞免疫球蛋白IgE的分泌,加剧肺组织炎症细胞浸润和气道黏液增生,最终导致气道重塑影响肺部功能。
近年来,内质网应激被发现参与过敏性哮喘的病理生理过程,包括气道高反应性、T细胞活化、炎症因子释放等[19]。有研究发现,哮喘患者肺部内质网应激水平异常升高,并与疾病的严重程度和炎症表型密切相关[20]。内质网应激相关蛋白和内质网应激诱导的凋亡相关基因在哮喘患者中显著增加,并造成嗜酸性粒细胞和中性粒细胞炎症上升,促进肺部功能损伤[8,21]。Wang等[22]发现,内质网应激可直接刺激哮喘患者气道黏液分泌,导致气道狭窄。激活内质网应激通路可导致肺组织免疫细胞释放促炎细胞因子,放大炎症反应;而敲除ATF6等内质网应激关键蛋白可降低过敏原诱导的小鼠BALF中嗜酸性粒细胞和淋巴细胞增殖[23–24]。此外,研究发现通过药物抑制内质网应激相关蛋白的表达,可显著缓解哮喘动物模型中气道炎症水平,改善肺组功能[6,19]。4-PBA被认为是一种主要作为化学伴侣的“内质网应激抑制剂”,其可通过与未折叠蛋白暴露的疏水片段相互作用,保护蛋白质免于聚集,促进蛋白质折叠,并减少内质网应激,进而调控IRE1α、PERK和ATF-6的表达[25]。4-PBA作为一种生物可利用的口服低分子量脂肪酸,已被美国食品和药物管理局批准用于临床治疗。作为内质网应激抑制剂,4-PBA被用于过敏性哮喘的内质网应激机制研究中,有效用剂量范围为20~80 mg·kg−1[14,26]。基于前期研究结果和长期DBP暴露的实验设计,本研究4-PBA使用剂量为50 mg·kg−1。本研究实验结果表明,长期DBP暴露会增加肺组织中IRE1α、PERK和ATF-6等内质网应激相关蛋白的表达,促发炎症反应。同时,通过使用内质网应激抑制剂4-PBA,可使肺中IRE1α、PERK和ATF-6的表达明显受到抑制,缓解肺部炎症和改善病理改变,揭示了内质网在DBP加重的过敏性哮喘中的介导作用。
综上所述,研究表明,DBP暴露可通过激活内质网应激通路促进过敏性气道炎症,恶化哮喘样的发展。这种加剧作用伴随着免疫球蛋白水平、Th2型和Th17型细胞因子的释放,进而导致肺组织病理学改变,影响肺部功能。
-
图 2 DBP暴露加重过敏性哮喘小鼠模型的病理改变
Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A:HE染色,黑色箭头表示气道重塑,红色箭头表示细胞浸润;B:各组肺组织HE染色炎症评分结果;C:PAS染色结果,黏液增生为紫红色染色;D:各组肺组织PAS染色黏液增生分析结果。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=4。
Figure 2. DBP exposure exacerbates pulmonary pathological changes in allergic asthma mice
Control: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A: HE staining, black arrow indicates airway remodeling, and red arrow indicates cell infiltration; B: Results of inflammation score in lung tissues of each group; C: PAS staining results, mucous hyperplasia is stained purple red; D: Results of PAS staining mucous hyperplasia analysis in lung tissues of each group. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=4.
图 3 DBP暴露升高过敏性哮喘小鼠血清T-lgE与OVA-IgE水平
Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A:血清T-lgE水平;B:血清OVA-lgE水平。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=8。
Figure 3. DBP exposure increases OVA-induced T-lgE and OVA-IgE levels in serum
Control: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A: Serum T-lgE level; B: Serum OVA-lgE level. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=8.
图 4 DBP暴露加剧过敏性哮喘小鼠肺泡灌洗液中细胞因子含量
Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A~D:IL-4、IL-5、IL-13和IL-17A水平。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=8。
Figure 4. DBP exposure aggravates cytokine levels in BALF of allergic asthma mice
Control: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A-D: IL-4, IL-5, IL-13, and IL-17A levels, respectively. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=8.
图 5 DBP暴露对过敏性哮喘模型小鼠肺组织内质网应激相关蛋白表达的影响
Control:对照组;OVA:哮喘小鼠模型组;OVA+DBP:OVA+40 mg·kg−1 DBP暴露组;OVA+DBP+4-PBA:OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA组。A、C、E:肺组织IRE1α、PERK、ATF-6免疫组织化学染色结果;B、D、F:肺组织IRE1α、PERK、ATF-6平均光密度分析结果。与对照组相比,**:P<0.01;与OVA+DBP组相比,##:P<0.01,n=4。
Figure 5. Effects of DBP exposure on the expression of endoplasmic reticulum stress-related proteins in allergic asthma mice
Control: Control group; OVA: Allergic asthma model group; OVA+DBP: OVA+40 mg·kg−1 DBP exposure group; OVA+DBP+4-PBA: OVA+40 mg·kg−1 DBP+50 mg·kg−1 4-PBA group. A, C, E: Immunohistochemical staining results of IRE1α, PERK, and ATF-6 in lung tissues, respectively; B, D, F: Mean optical density analysis results of IRE1α, PERK, and ATF-6 in lung tissues, respectively. Compared with the control group, **: P < 0.01; Compared with the OVA+DBP group, ##: P < 0.01, n=4.
-
[1] OLSSON D, FORSBERG B, BRÅBÄCK L, et al. Early childhood exposure to ambient air pollution is associated with increased risk of paediatric asthma: an administrative cohort study from Stockholm, Sweden[J]. Environ Int, 2021, 155: 106667. doi: 10.1016/j.envint.2021.106667
[2] KETEMA R M, AIT BAMAI Y, MIYASHITA C, et al. Phthalates mixture on allergies and oxidative stress biomarkers among children: the Hokkaido study[J]. Environ Int, 2022, 160: 107083. doi: 10.1016/j.envint.2022.107083
[3] NAVEEN K V, SATHIYASEELAN A, CHOI H B, et al. Biodegradation of dibutyl phthalate in liquid fermentation by endophytic Penicillium species and the toxicity evaluation of the by-product[J]. Sci Total Environ, 2023, 890: 164403. doi: 10.1016/j.scitotenv.2023.164403
[4] LEUNG C, RYU M H, BØLLING A K, et al. Peroxisome proliferator-activated receptor gamma gene variants modify human airway and systemic responses to indoor dibutyl phthalate exposure[J]. Respir Res, 2022, 23(1): 248. doi: 10.1186/s12931-022-02174-8
[5] LI Y, YAN B, WU Y, et al. Ferroptosis participates in dibutyl phthalate-aggravated allergic asthma in ovalbumin-sensitized mice[J]. Ecotoxicol Environ Saf, 2023, 256: 114848. doi: 10.1016/j.ecoenv.2023.114848
[6] ZHU G, ZENG Y, PENG W, et al. Edaravone alleviated allergic airway inflammation by inhibiting oxidative stress and endoplasmic reticulum stress[J]. Eur J Pharmacol, 2024, 966: 176317. doi: 10.1016/j.ejphar.2024.176317
[7] LU Y, XING Q Q, XU J Y, et al. Astragalus polysaccharide modulates ER stress response in an OVA-LPS induced murine model of severe asthma[J]. Int J Biol Macromol, 2016, 93: 995-1006. doi: 10.1016/j.ijbiomac.2016.09.058
[8] PATHINAYAKE P S, WATERS D W, NICHOL K S, et al. Endoplasmic reticulum-unfolded protein response signalling is altered in severe eosinophilic and neutrophilic asthma[J]. Thorax, 2022, 77(5): 443-451. doi: 10.1136/thoraxjnl-2020-215979
[9] YUE J, SUN X, DUAN X, et al. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress[J]. Environ Int, 2023, 172: 107749. doi: 10.1016/j.envint.2023.107749
[10] ZHOU S, HAN M, REN Y, et al. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release[J]. Ecotoxicol Environ Saf, 2020, 199: 110740. doi: 10.1016/j.ecoenv.2020.110740
[11] WANG W R, CHEN N T, HSU N Y, et al. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy[J]. Clin Epigenetics, 2021, 13(1): 76. doi: 10.1186/s13148-021-01061-1
[12] FRANKEN C, LAMBRECHTS N, GOVARTS E, et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents[J]. Int J Hyg Environ Health, 2017, 220(2): 468-477. doi: 10.1016/j.ijheh.2017.01.006
[13] MAESTRE-BATLLE D, HUFF R D, SCHWARTZ C, et al. Dibutyl phthalate augments allergen-induced lung function decline and alters human airway immunology. A randomized crossover study[J]. Am J Respir Crit Care Med, 2020, 202(5): 672-680. doi: 10.1164/rccm.201911-2153OC
[14] LEI F, WU Y, LI C, et al. Mediation of endoplasmic reticulum stress and NF-κB signaling pathway in DINP-exacerbated allergic asthma: a toxicological study with Balb/c mice[J]. J Hazard Mater, 2023, 460: 132392. doi: 10.1016/j.jhazmat.2023.132392
[15] XIE X, LI Y, YAN B, et al. Mediation of the JNC/ILC2 pathway in DBP-exacerbated allergic asthma: a molecular toxicological study on neuroimmune positive feedback mechanism[J]. J Hazard Mater, 2024, 465: 133360. doi: 10.1016/j.jhazmat.2023.133360
[16] FERNÁNDEZ-GALLEGO N, CASTILLO-GONZÁLEZ R, MÉNDEZ-BARBERO N, et al. The impact of type 2 immunity and allergic diseases in atherosclerosis[J]. Allergy, 2022, 77(11): 3249-3266. doi: 10.1111/all.15426
[17] LI J, CHEN Y, CHEN Q Y, et al. Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice[J]. Environ Pollut, 2019, 247: 586-594. doi: 10.1016/j.envpol.2019.01.091
[18] LIAN Z, QI H, LIU X, et al. Ambient ozone, and urban PM2.5 co-exposure, aggravate allergic asthma via transient receptor potential vanilloid 1-mediated neurogenic inflammation[J]. Ecotoxicol Environ Saf, 2022, 243: 114000. doi: 10.1016/j.ecoenv.2022.114000
[19] XIAO Y, ZHANG H, LIU Y, et al. Endoplasmic reticulum stress drives macrophages to produce IL-33 to favor Th2 polarization in the airways[J]. J Leukoc Biol, 2024, 115(5): 893-901. doi: 10.1093/jleuko/qiad109
[20] MO L, LIU Y, XU X, et al. Endoplasmic reticulum stress impairs the immune regulation property of macrophages in asthmatic patients[J]. Clin Immunol, 2023, 252: 109639. doi: 10.1016/j.clim.2023.109639
[21] CHEN R, MICHAELOUDES C, LIANG Y, et al. ORMDL3 regulates cigarette smoke-induced endoplasmic reticulum stress in airway smooth muscle cells[J]. J Allergy Clin Immunol, 2022, 149(4): 1445-1457.e5. doi: 10.1016/j.jaci.2021.09.028
[22] WANG X, YANG X, LI Y, et al. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma[J]. EBioMedicine, 2017, 15: 137-149. doi: 10.1016/j.ebiom.2016.12.010
[23] HOFFMAN S M, TULLY J E, NOLIN J D, et al. Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis[J]. Respir Res, 2013, 14(1): 141. doi: 10.1186/1465-9921-14-141
[24] PATHINAYAKE P S, HSU A C Y, NICHOL K S, et al. Endoplasmic reticulum stress enhances the expression of TLR3-induced TSLP by airway epithelium[J]. Am J Physiol Lung Cell Mol Physiol, 2024, 326(5): L618-L626. doi: 10.1152/ajplung.00378.2023
[25] MARCINIAK S J, CHAMBERS J E, RON D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2): 115-140. doi: 10.1038/s41573-021-00320-3
[26] PAO H P, LIAO W I, TANG S E, et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating claudin-4 expression[J]. Front Immunol, 2021, 12: 674316. doi: 10.3389/fimmu.2021.674316